
 

 
 

Engineering Principles 1 



UNIT 1 
 

Getting to know your unit 

 
To make an effective contribution to the design and development of 

engineered products and systems, you must be able to draw on the 
principles laid down by the pioneers of engineering science. The 
theories developed by the likes of Newton and Ohm are at the heart of 
the work carried out by today’s multi-skilled engineering workforce. 

This unit covers a range of both mechanical and electrical principles and 
some of the necessary mathematics that underpins their application to 

solve a range of engineering problems. 

 

 

How you will be assessed 
This unit is externally assessed by an unseen paper-based examination. The examination is set and marked by Pearson. 

Throughout this unit you will find practice activities that will help you to prepare for the examination. At the end of the 

unit you will also find help and advice on how to prepare for and approach the examination. The examination must be 

taken under examination conditions, so it is important that you are fully prepared and familiar with the application of    

the principles covered in the unit. You will also need to learn key formulae and be confident in carrying out calculations 

accurately. A scientific calculator and knowledge of how to use it effectively will be essential. 

The examination will be two hours long and will contain a number of short- and long-answer questions. Assessment 

will focus on applying appropriate principles and techniques to solving problems. Questions may be focused on a 

particular area of study or require the combined use of principles from across the unit. An Information Booklet of 

Formulae and Constants will be available during the examination. 

This table contains the skills that the examination will be designed to assess. 
 

Assessment objectives 

AO1 Recall basic engineering principles and mathematical methods and formulae 

AO2 Perform mathematical procedures to solve engineering problems 

AO3 Demonstrate an understanding of electrical, electronic and mechanical principles to solve engineering problems 

AO4 Analyse information and systems to solve engineering problems 

AO5 Integrate and apply electrical, electronic and mechanical principles to develop an engineering solution 

This table contains the areas of essential content that learners must be familiar with prior to assessment. 
 

Essential content 

A1 Algebraic methods 

A2 Trigonometric methods 

B1 Static engineering systems 

B2 Loaded components 

C1 Dynamic engineering systems 

D1 Fluid systems 

D2 Thermodynamic systems 

E1 Static and direct current electricity 

E2 Direct current circuit theory 

E3 Direct current networks 

F1 Magnetism 

G1 Single-phase alternating current theory 
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Assessment 

This unit is externally 

assessed using an unseen 

paper-based examination 

that is marked by 

Pearson. 
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Getting started 

To get started, have a quick look through each topic in this unit 
and then in small groups discuss why you think these areas are 
considered important enough to be studied by everyone taking a 

BTEC National Engineering course. Pick one or more topics and 

discuss how they might be relevant to a product, activity or industry 
you are familiar with. 

 

 
 

 A Algebraic and trigonometric mathematical methods 
 

Engineers have to be confident that the solutions they 

devise to address practical problems are based on sound 

scientific principles. In order to do this,, they often have to 

solve complex mathematical problems, so they must be 

comfortable and competent when working with algebra 

and trigonometry. 

 

A1 Algebraic methods 
Algebra allows relationships between variables to be 

expressed in mathematical shorthand notation that can be 

manipulated to solve problems. In this part of the unit, we 

will consider algebraic expressions involving indices and 

logarithms. 

Indices 

Even if you do not yet recognise the term, you will 

already be familiar with the use of indices in common 

mathematical expressions. For example: 

▸ 3 × 3 is otherwise known as ‘three squared’ or 32 in 
mathematical notation using indices. 

▸ 5 × 5 × 5 is otherwise known as ‘five cubed’ or 53 in 
mathematical notation using indices. 

The two parts of the notation used to describe indices are 

called the base and the index. For example: 

▸ In the expression 32 the base is 3 and the index is 2. 

Often in engineering mathematics we have to consider 

situations where we do not yet know values for the 

numbers involved. We use algebra to represent unknown 

numbers with letters or symbols. When applied to indices: 

▸ a × a = a2, where a is the base and 2 is the index. 

▸ b × b × b = b3, where b is the base and 3 is the index. 

Where the index is also unknown, it can be represented by 

a letter as well, for example: 

▸ an, where a is the base and n is the index. 

▸ bm, where b is the base and m is the index. 

The laws of indices 

▸  When dealing with equations that contain terms 

involving indices, there is a set of basic rules that you  

can apply to simplify and help solve them. These are the 

laws of indices. They are summarised in Table 1.1. 

▸ Table 1.1 The laws of indices 
 

Operation Rule 

Multiplication am × an = am + n 

Division am 
= am − n 

an 

Powers (am)n = am × n 

Reciprocals  1 
= a−n 

an 

Index = 0 a0 = 1 

Index = 1 or 0.5 
2 

 
1 

a 2 = √a 

Index = 
1

 
n 

a 
1 

= 
n 
a 

n   √ 

Index = 1 a1 = a 

 

 
 

 

Expression – a mathematical statement such as a2 + 3 or 

3a − t. Expressions can easily be recognised because they 

do not contain an equals sign. 

Base – the term that is raised to an index, power or 

exponent. For example, in the expression 43 the base is 4. 

Index – the term to which the base is raised. For 

example, in the expression 43 the index is 3. The index 

may also be called the power or exponent. The plural of 

‘index’ is ‘indices’. 

Equation – used to equate two expressions that have 

equal value, such as a2 + 3 = 19 or t − 1 = 3a + 12. 

Equations can easily be recognised because they always 

contain an equals sign. 
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b4 
• a−3(b−2)2a3.5 = a−3 + 3.5b−4 = a0.5b−4 or

 √a 

 
or b  

= a b  −1    −1    0.5   2 −1  + 0.5    −1 + 2 −0.5 1 = a b a b = a 
 
  

b−2 

a b a  • 

= a b 1.5    2   −1    −1 1.5 − 1    2 – 1 0.5 1 = a    b  a   b  = a b 
 
  a b a  2 −1 

 

 

• 

You can use the laws of indices to simplify 

expressions containing indices. 

• a2a4a0a−3.2 = a2 + 4 + 0 − 3.2 = a2.8 

• (√a)3 a −1 = (a0.5)3 a −1 = a 1.5 a −1 = a 1.5−1 = a0.5 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Logarithms 

Logarithms are very closely related to indices. 

The logarithm of a number (N) is the power (x) to which a 

given base (a) must be raised to give that number. 

▸   In general terms, where N = ax, then loga N = x. 

In engineering, we encounter  mainly  common 

logarithms, which use base 10, and natural logarithms, 

which use base e. 

The Euler number (e) is a mathematical constant that 

approximates to 2.718. You will come across this again later in 

the section dealing with natural exponential functions. 

Common logarithms 

Common logarithms are logarithms with base 10. 

▸ Where N = 10 x, then log10 N = x. 

 

▸ When using common logarithms, there is no need to 

include the base 10 in the notation, so where N = 10x, 
you can write simply log N = x. 

This corresponds to the log function on your calculator. 

Natural logarithms 

In a similar way, when dealing with natural logarithms 

with base e: 

▸ Where N = e x, then loge N = x. 

▸ Natural logarithms with base e are so important in 
mathematics that they have their own special notation, 
where loge N is written as ln N. So where N = e x, then 

ln N = x. 

This corresponds to the ln function on your calculator. 

 
The laws of logarithms 

There are a number of standard rules that can be used 

to simplify and solve equations involving logarithms. 

These are the laws of logarithms. They are summarised 

in Table 1.2. 

 

▸ Table 1.2 The laws of logarithms 
 

Operation Common logarithms Natural logarithms 

Multiplication log AB = log A + log B ln AB = ln A + ln B 

Division log 
A 

= log A − log B 
B 

ln 
A 

= ln A − ln B 
B 

Powers log An = n log A ln An = n ln A 

Logarithm of 0 log 0 = not defined ln 0 = not defined 

Logarithm of 1 log 1 = 0 ln 1 = 0 

 
 
 

 

 

P A U s E P O I N T  Use your calculator to practise finding the common and natural logarithms of 

a range of values. Be sure to include whole numbers and decimal fractions less 

than 1. 

What happens when you try to find the logarithm of 0 or a negative number using 

your calculator? 

From the relationship between logarithms and indices you know that if log 0 = x, 

then 0 = 10x. What value must x take if 10x = 0? 

Take a few moments to think about why log 0 and log −1 are not defined and will 

produce an error on your calculator. 

Hint 
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= 3.056 (to 4 s.f.) 

2 ln
12 

+ 2 = 2 ln 1.695… + 2 = 2 × 0.5278… + 2 

ln t = 2 ln 12 − ln 3 + 2 = 1.957… 
 

You can now use the general relationship that 

where ln N = x, then N = ex. 

In this case, ln t = 1.957…, so t = e1.957…, which you can 

use your calculator to evaluate. 

t = 7.08 (to 3 s.f.) 

Always check your solution by substituting the 

unrounded value of the solution back into the 

original equation: 

ln 3t = ln 21.235… = 3.056 (to 4 s.f.) 

ln 3t = 2 ln 
12 

+ 2 
 

ln 3 + ln t = 2(ln 12 – ln t) + 2

ln 3 + ln t = 2 ln 12 – 2 ln t + 2 

3 ln t = 2 ln 12 – ln 3 + 2 

 
 

ln 3t = 2 ln 
12 

+ 2. 

 
x =   

log 9  +  log 14   
= −0.817 (rounded 

to 3 significant figures (s.f.)) 

Always check your solution by substituting the 

unrounded value of the solution back into the 

original equation: 

log 14(1 − x) = log 14[1 − (−0.817…)] = 2.08 (to 3 s.f.) 

log 9(x + 3) = log 9(−0.817… + 3) = 2.08 (to 3 s.f.) 

2 Use the laws of logarithms to solve the equation 

1 Use the laws of logarithms to solve the equation 

log 14(1 − x) = log 9(x + 3). 

 

log 14(1 − x) = log 9(x + 3) 

(1 − x) log 14 = (x + 3) log 9 
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Exponential growth and decay 
Exponential functions where x and y are variables and N is  

a constant take the general form y = Nx. 

Some common systems found in engineering and in 

nature – such as charging capacitors, radioactive decay 

and light penetration in oceans – can be defined by 

exponential functions. 

Several important growth and decay processes in 

engineering are defined by a special type of exponential 

function that uses the Euler number (e) as its base (N). 

This is known as the natural exponential function and 

takes the basic form y = ex. 

If you plot the function y = ex as a graph (see Figure 1.1), 

then the curve it describes has two special characteristics 

that other exponential functions do not have. 

▸ At any point on the curve the slope or gradient of the 
graph is equal to ex. 

▸ At x = 0 (where the curve intersects the y-axis) the graph 
has a slope or gradient of exactly 1. 

▸ Figure 1.1 Graph of the natural exponential function y = e x 

Examples of engineering formulae containing natural 

exponential functions are shown in Table 1.3 for charging/ 

discharging a capacitor. 

▸ Table 1.3 Example engineering formulae containing natural 
exponential functions 

 

Description Formula 

Capacitor charge voltage V = V0(1 − e−t/RC) 

Capacitor discharge voltage V = V0 e−t/RC 

 

 

y 
 
 

 

 

 

 

 
 

3 x 

 

Tangent – a straight line with a slope equal to that of a 

curve at the point where they touch. 

Tabulate values of x and y. Ensure that your axes are of appropriate size and scale. 

The gradient of the tangent at any point on the curve reflects the rate of change in y 

with respect to x at that point. What happens to this rate of change as x increases? 

Hint 

 

Examine the characteristics of exponential functions by plotting a graph of y = 2x for 

values of x between 1 and 10. 
P A U s E P O I N T  
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= 0.188 s (to 3 s.f.) 

Substituting in the values gives: 

t = −[30 × 103 × 47 × 10−6] ln 
3 . 5 

= −1.41 × −0.133… 

 
 

 
 

 
 

 

Substitute the given values into the formula, 

remembering to convert all values into appropriate 

units. 

 

 

 

V = 3.5 V 

Rearranging the formula V = V0e−t/RC to make t the 

subject: 

 

 

Substitute the given values into the formula, 

remembering to convert all values into appropriate 

units. 

 

 

 

t = 3 s 

Substituting these values into V = V0(1 − e−t/RC) gives 

V = 3(1 − e−3). 

So V = 3(1 – 0.049…) = 2.85 V (to 3 s.f.) 

▸ A 100 µF capacitor calculate V when t = 3 s. 

When a capacitor with capacitance 

C is charged through a resistance 

R towards a final potential  V0, 

the equation giving the voltage V 

across the capacitor at any time t 

is V = V0(1 − e−t/RC). 

Given the values C = 100 µF, 

 

 

 
 

 

 

 

Problems involving exponential growth and decay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Linear equations and straight-line graphs 
In engineering, many simple systems behave in a linear 

fashion. Table 1.4 shows some examples. When plotted 

graphically, linear relationships are characterised by a 

straight line with a constant gradient. 

 

▸ Table 1.4 Examples of engineering formulae describing linear 
relationships 

 

Description Formula 

Standard general form y = mx + c 

Ohm’s law V = IR 

Gravitational potential energy PE = mgh 

Electrical power P = IV 

Resistivity ρ = 
RA 

l 

Linear motion v = u + at 

The gradient of the tangent at any point on the curve reflects the rate of change in 

y with respect to x at that point. Use your graph to demonstrate that for y = ex the 

tangent at any point has gradient ex. 

 

Examine the characteristics of the natural exponential function by plotting a graph 

of y = ex for values of x between 1 and 10. 
P A U s E P O I N T  

 

▸ A 47 µF capacitor calculate the time t at which 

V = 3.5 V. 

When a capacitor with capacitance 

C is discharged through a resistance 

R from an initial potential V0, the 

voltage V across the capacitor at  

any time t is given by the 

equation V = V0e−t/RC. 

Given the values C = 47 µF, 
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y 
10 

 

 

 

 

 

 

 

 

 

 
 

 

1 2 3 4 5 6 x 

 

subject of an equation – a single term becomes the 

subject of an equation when it is isolated on one side of 

the equation with all the other terms on the other side. 

For example, in the equation y = 4x + 3, the y term is the 

subject. 

Gradient – also called ‘slope’, measures how steep a 

line is. It is calculated by picking two points on the line 

and dividing the change in height by the change in 
change in y value 

horizontal distance, or 
change in x value

. 

 

Subtract 3 from both sides of the 

equation. 

Divide both sides of the equation 

by 4. 
 

x = 
9

 

Rearrange 4x + 3 = 12 to make x the subject of the 

equation. 

 

4x = 12 − 3 = 9 

 

sides of the equation. 

 

Divide both sides of the equation 

by 11. 
11 

b = 8  

9b + 2b = 14 − 6 

11b = 8 

Rearrange 9b + 6 = 14 − 2b to make b the subject of 

the equation. 
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Linear equations 

Linear equations contain unknowns that are raised to their 

first power only, such as x raised to its first power or x1 

(which is usually written simply as x). Linear equations take 

the general form y = mx + c. 

Linear equations containing a single unknown quantity can 

be solved by rearranging to make the unknown quantity   

the subject of the equation. 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
If the same unknown quantity occurs more than once in a 
linear equation, then all the terms containing the unknown 
quantity need to be isolated on one side of the equation 
with all the other terms on the other side. This is called 
‘gathering like terms’. 

 

▸  Figure 1.2 The graphical representation of a linear equation is  
a straight line 

The gradient of a linear equation can be: 

▸ positive – the y values increase linearly as the x values 
increase (the line slopes up from left to right) 

▸ negative – the y values decrease linearly as the x values 
increase (the line slopes down from left to right) 

▸ zero – the y values stay the same as the x values increase 
(the line is parallel to the x-axis). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

straight-line graphs 

Graphs in mathematics usually use a horizontal x-axis and  

a vertical y-axis (known as Cartesian axes). 

A linear equation with two unknowns can be represented 

graphically by a straight line as shown in Figure 1.2. 

In the general formula used to describe a linear equation,   

y = mx + c, m is the gradient of the line and c is the value of 

y where the line intercepts the y-axis (when x = 0). 

solving pairs of  simultaneous  linear  equations 

Sometimes in engineering it is necessary to solve systems 

that involve pairs of independent equations that share two 

unknown quantities. There are several examples of this in 

the assessment activity practice questions at the end of  

this section. 

When you solve simultaneous equations, you are 

determining values for the unknowns that satisfy both 

equations. This is easiest to see by considering two 

independent linear equations in x and y that are plotted 

graphically on the same axes (see Figure 1.3). The only 

position where the same values of x and y satisfy both 

equations is where the lines intersect. You can read these 

values from the x-axis and the y-axis. In this example, the 
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solution is x = 2 and y = 4. 
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Now substitute x = 2 into equation (1) in order to 

find y: y = 2 + 2 = 4. 

To check your solution, substitute x = 2 into 

equation (2) and see if you get the same value for y: 

 

y = 4 

 

Multiply out the brackets. 

Collect like terms. 

 

2x + x = 10 – 4 

3x = 6 

x = 2 

Solve this pair of simultaneous equations: 

y = x + 2 (1) 

2y = −x + 10 (2) 

 

Substitute equation (1) into equation (2) to get 

2(x + 2) = −x + 10. 

 

Solve the same pair of simultaneous equations as 

before: 

y = x + 2 (1) 

2y = −x + 10 (2) 
 

 

Multiply equation (1) by 2 so that the y terms in 

both equations become the same: 

2y = 2x + 4 (3) 

Subtract equation (2) from equation (3) to eliminate 

the identical terms in y: 

(2x + 4) − (−x + 10) = 0 

3x – 6 = 0 

3x = 6 

x = 2 

As before, substitute x = 2 into equation (1) to find 

y = 4, and then check your solution in equation (2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▸  Figure 1.3 The solution of the simultaneous linear equations   y 

= x + 2 and 2y = −x + 10 is given by the intersection point of the 

two lines 
 

Of course you could always plot graphs of the linear 

equations when solving simultaneous equations, but this 

is a time-consuming approach and less accurate than the 

alternative algebraic methods. 

The two main algebraic methods – substitution and 

elimination – are best explained by working through 

examples. 

 
 
 
 
 
 
 
 
 
 
 
 

Coordinates on Cartesian grid 

Any point on a plotted linear equation can be expressed 

by its coordinates (x, y). 

In the example shown in Figure 1.3, the two lines cross at 

the point where x = 2 and y = 4. Its coordinates are (2, 4). 

Any point on the x-axis has a y-coordinate of zero. For 

example, the point (4, 0) lies on the x-axis. 

Similarly, any point on the y-axis has an x-coordinate of 

zero, so the point (0, 4) lies on the y-axis. 

The point (0, 0), where both x- and y-coordinates are zero, 

is called the origin and is represented by ‘O’. 

 

Quadratic equations 

Quadratic equations contain unknowns that are raised to 

their second power, such as x2. They take the general 

form y = ax2 + bx + c. In this equation x and y are unknown 

variables, and coefficients a, b and c are constants that will 

be discussed later. 

A quadratic equation with two unknowns can be 

represented graphically by a curve. An example is shown 

in Figure 1.4. 

y 
10 
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▸ Figure 1.4 Graph of the quadratic equation y = x2 + 2x – 3 

 
You will often have to solve quadratic equations in 

engineering problems. This can be done by arranging the 

equation in the general form for quadratics and finding the 

two values of x for which y = 0. These are called the roots  

of the equation and are shown on the graph as the points 

where the line intersects the x-axis. 

Two algebraic methods of solving quadratic equations 

are factorisation and using the quadratic formula. 

Before you consider factorising, it is a good idea to remind 

yourself how to multiply an expression by a number or by   a 

symbol or more complicated expression. 

 

 

Factorisation 

You can think of factorisation as the opposite of 

multiplying out, although it is generally somewhat more 

difficult. Factorising can be done in several ways, using 

some or all of the following techniques. 

▸ Extracting common factors 
Common factors are terms by which some or all parts    

of an expression can be divided. These can be extracted 

as follows: 

• ax + ay = a(x + y) where a is the common factor 

• 2x + 4y = 2(x + 2y) where 2 is the common factor 

• a(x + 2) + b(x + 2) = (x + 2)(a + b) where (x + 2) is the 

common factor. 

▸ Grouping 
When two variables x and y are present in the same 

expression, they must be grouped together before 

factorising. For example: 

32x2 + 18y3 + 8x + 9y2 = 18y3 + 9y2 + 32x2 + 8x 

= 9y2(2y + 1) + 8x(4x + 1) 

Sometimes this might mean that you have to multiply 

out the expression first. For example: 

4(2y2  − x2) + y(y2  + 7) = 8y2  − 4x2  + y3  + 7y 

= y3  + 8y2  + 7y − 4x2 

= y(y2  + 8y + 7) − 4x2 

Tabulate values of x and y for each equation. Ensure that the scales of your axes are 

appropriate. 

Compare and evaluate the use of graphical and analytical methods in solving 

simultaneous equations. Are there any situations where a graphical approach might 

be preferred? 

Hint 

 
 

Show the efficiency of using an analytical approach by solving the simultaneous 

equations in the above worked examples with the graphical method. 
P A U s E P O I N T  

 

  
5x 

 
 

 
• 5 − 2  = − 10. 

Multiply each term of the expression by the 

number: 

• 4(3x − 2) = 12x − 8 

 

Multiply out the brackets term by term, then collect 

like terms: 

• 2x(3x − 2) = 6x2 − 4x 

• (x + 1)(x − 2) = x2 − 2x + x − 2 = x2 − x − 2 

• (x + 2)(3x − 2) = 3x2 − 2x + 6x − 4 = 3x2 + 4x − 4. 
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The second example can be factorised further by using the 

methods for factorising quadratics described in the next 

section. 

 
solving quadratic equations using factorisation 

Let us take an example of a quadratic equation that you 

might need to solve as part of an engineering problem: 

3x + 8 = 5x + x2 

▸ First, rearrange the equation (if necessary) to make one 
side of the equation zero. 

0 = 5x + x2  – 3x – 8 Move all the terms to one side of 

the equation. 

0 = x2  + 2x − 8 Arrange into the standard form 

for quadratic equations. 

▸ The next step is to factorise the right-hand side of this 
equation. 

 

 

 
To do this, you need to find two expressions that when 

multiplied together give x2 + 2x − 8. This looks difficult, but 

there are a few general guidelines that will help: 

▸ If the coefficient of the x2 term (a) is 1, then the 
coefficient of each of the x terms in the factors will also 
be 1. 

▸   When the number terms in the two factors are 
multiplied together, the product must equal the number 
term (c) in the quadratic expression. 

▸ If the coefficient of the x2 term (a) is 1, then the 

coefficient of the x term (b) in the quadratic expression 
is equal to the sum of the number terms in the two 

factors. 

Applying these guidelines to x2 + 2x − 8, you know that: 

▸   the coefficients of the x terms in the factors will be 1 

▸ the product of the number terms in the factors will be 
−8 

▸ the sum of the number terms in the factors will be 2. 

 
Finding the terms to put in the brackets is then often a 

case of trying different values until you identify those that 

meet the required criteria: 

x2 + 2x − 8 = (x − 2)(x + 4) 

▸ Equate each of the factors to zero to obtain the roots of 
the equation. 

(x − 2) = 0, so x = 2 

(x + 4) = 0, so x = −4 

▸ Check that each root satisfies the original equation by 
substitution. 

3x + 8 = 5x + x2 

When x = −4: −12 + 8 = −20 + 16 

or −4 = −4 

When x = 2: 6 + 8 = 10 + 4 

or 14  = 14 

▸ Check to ensure that each solution is reasonable in the 
context of the question and clearly state the solution. 

There are two values of x for which the quadratic equation 

3x + 8 = 5x + x2 is true. These are x = 2 and x = −4. 

See the worked example on page 11. 

Some examples of engineering formulae describing 

quadratic relationships are given in Table 1.5. 

▸ Table 1.5 Examples of engineering formulae describing 
quadratic relationships 

 

Description Formula 

Standard general form ax2 + bx + c = 0 

Displacement s = ut + 1at2 
2 

Total surface area of a cylinder A = 2πr2 + 2πrh 

 
solving quadratic equations using the quadratic 

formula 

Sometimes it is difficult to use factorisation to find the 

roots of a quadratic equation. In such cases, you can use 

an alternative method. 

The formula for the roots of a quadratic equation arranged 

in the standard form is: 
 

 

x = 
− b ± √b2 − 4ac 

2a 

 

Coefficient – a number or symbol that multiplies a 

variable. For example, in the expression 3x, 3 is the 

coefficient of the variable x. 
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Worked Example 

A train runs along a level track with a velocity of 5 m s−1. 

The driver presses the accelerator, causing the train to 

increase speed by 2 m s−2. The motion of the 

train is defined by the equation s = ut + 1 at2 

where: s is displacement (the distance travelled) (m) 

u is initial velocity (m s−1) 

t is time (s) 

a is acceleration (m s−2). 

Calculate the time the train takes to travel a distance 

of 6 m. 

 
 

 
 

solution 
▸ Train running along a track 

Rearrange the equation into the general form for a quadratic, making one side equal to zero: 
1at2 + ut − s = 0 

Substitute the values u = 5, s = 6 and a = 2 into the equation: 
1(2)t2  + 5t − 6 = 0 

t2  + 5t − 6 = 0 

The left-hand side can be factorised by inspection to give (t + 6)(t − 1) = 0. 

This equation is true when either of the factors is equal to zero, so t = −6 or t = 1. 

It is important to check these solutions by substituting back into the original quadratic equation given in the 

question: s = ut + 1at2 = 5t + t2. 

You will find that when t = 1, s = 6 and when t = −6, s = 6. 

This confirms that the solutions determined by finding the roots of the quadratic equation are mathematically 

correct, because they both give the distance required in the question. 

However, you must now consider whether both solutions actually fit the practical situation in the real world.  

In this case t = −6 doesn’t make sense as a solution, because it 

would mean that the train reached the required distance 

6 seconds before it started accelerating. 

The roots can be seen more clearly when illustrated graphically, 

as in Figure 1.5. 

Finally, you should clearly state the solution to the problem: 

The time taken for the train to travel a distance of 6 m is 1 s. 
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▸ Figure 1.5 Graph showing roots of the quadratic 
expression t2 + 5t − 6 at t = −6 and t = 1 
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Worked Example 

A ball is thrown vertically upwards with an initial velocity of 16 m s−1. The height reached by the ball is given by the 

equation h = ut − 1gt2 

where: h is the vertical height (m) 

u is the initial vertical velocity (m s−1) 

t is time (s) 

g is the gravitational field strength (9.81 m s−2) 

Calculate the values of t at which the height of the ball is 6 m above the point where it was released. 

solution 

Rearrange the equation into the general form for a quadratic equation, making one side equal to zero: 
1gt2 − ut + h = 0 

Substitute the values u = 16, h = 6 and g = 9.81 into the equation: 
1  × 9.81t2  − 16t + 6 = 0 

4.905t2  − 16t + 6 = 0 

It would be really difficult to find the roots of this equation by factorisation, so use the 

general formula for solving quadratics: x = 
− b ± √b2 − 4ac 

. 
2a 

By comparing the formula with the standard form ax2 + bx + c, you can see that 

a = 4.905, b = −16, c = 6 

So t = 
− (−16) ± √(−16)2 − (4 × 4 . 905 × 6) 

2 × 4 . 905 

= 
16 ± √256 − 117 . 72 

9 . 81 

= 16 ± 11 . 76 

9 . 81 

= 0.432 or 2.83 

It is important to check these solutions by substituting back into the original quadratic equation given in the 

question: h = ut − 1gt2 = 16t – 4.905t2. 

You will find that when t = 0.432…, h = 6 and when t = 2.83…, h = 6. Be careful to use the unrounded values when you 

do the checks. 

This confirms that the solutions determined by finding the roots of 

the quadratic equation are correct because they both give the 

required height stated in the question. 

The next thing to do is consider whether these solutions actually 

fit the practical situation for which they were generated. In this case, it 

makes sense that as the ball moves up it will pass the height of 6 m. 

Gravity will slow this ascent until the ball actually stops momentarily 

before it falls back towards the ground. On its way down it will 

pass the height of 6 m once again. 

This can be seen more clearly when illustrated graphically, as in 

Figure 1.6. 

Finally, you should clearly state the solution to the problem: 

h 

 

15 

 
 
 
 
 
 
 

O t 5 0.432 t 5 2.83 

 
 
 
 
 

 
h 5 6 

 
 

 
4 t 

The values of t at which the height of the ball is 6 m above the 

point where it was released are 0.432 s and 2.83 s. 
▸ Figure 1.6 Graph of h = 16t – 4.905t2, 

showing when it reaches the height of 6 m 
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360 

circle. A complete circle contains  360°. 

Radian (symbol: rad or c) – one radian is the angle 

subtended at the centre of a circle by two radii of  

length r that describe an arc of the same length r on the 

circumference. A complete circle contains 2π rad. 

subtend – to form an angle between two lines at the 

point where they meet. 

Degree (symbol: °) – one degree is 1 th of a complete 
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2π 

θ 

 

 

 
 

 

A2 Trigonometric methods 

Angular measurement 

You are already familiar with angular measurements made 

in degrees. In practical terms, this is the most common   

way to define an angle on an engineering drawing that a 

technician might use when manufacturing a component in 

the workshop. 

However, there is another unit of angular measurement, 

called the radian, which is used extensively in engineering 

calculations. 

▸ Table 1.6 General formulae for circular measurements (see 
Figure 1.7) 

 

Arc length = rθ 

Circumference of a circle = r(2π) = 2πr 

Area of a sector = 1 r 2θ 
2 

Area of a full circle = 1 r 2(2π) = πr 2 
2 

 
 

r arc length 

θ 
r 

sector of 
a circle 

▸ Figure 1.7 Arc length and sector of a circle 
 

Triangular measurement 

In right-angled triangles we name the three sides in 

relation to the right angle and one of the other two angles, 

θ (see Figure 1.8). 

 
Opp 

 

Circular measurement 

One revolution of a full circle contains 360° or 2π radians. 

It is reasonably straightforward to convert angles stated in 

degrees to radians and vice versa. 

Given that 2π radians = 360° 

1 radian = 
360 ° 

≈ 57.3° (to 3 s.f.) 

 

Adj 

▸ Figure 1.8 Trigonometric naming conventions for a right- 
angled triangle 

▸ The side opposite the right angle is the hypotenuse 
(hyp). 

▸ The side next to the angle θ is the adjacent (adj) side. 

▸ The side opposite the angle θ is the opposite (opp) side. 
The ratios of the lengths of these sides are given specific 

and 1° =
 2π

 
360 

≈ 0.0175 rad (to 3 s.f.) names and are widely used in engineering (see Figures 1.9–

1.11): 

The use of radians makes it straightforward to calculate 

some basic elements of circles with the general formulae 

shown in Table 1.6, where the angle θ is measured in 

radians. 

▸ sine (sin), where 

opp 
sin = 

hyp
 

Consider how else you might solve problems that involve quadratic equations. 

Suppose that you want to solve the quadratic equation y = x2 + 4x + 6 to find values 

of x when y = 1. This would mean finding the roots of the quadratic expression 

x2 + 4x + 5. Can you solve this? Draw a graph of the function y = x2 + 4x + 5 to help 

explain why not. 

Hint 

 

Discuss with a colleague or as a group why methods of finding the roots of quadratic 

equations are important and useful mathematical tools for engineers. 
P A U s E P O I N T  

 
Hyp 
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θ 

θ 

cos θ 

 

 
 

 
 

▸ cosine (cos), where 

adj 
cos    = 

hyp
 

▸ tangent (tan), where 

opp 
tan    =   

adj
 

From these definitions it can also be deduced that 

tan θ = sin θ 

Graphs of the trigonometric functions 

y 
1.0 

0.5 

0 

20.5 

21.0 
 

▸ Figure 1.9 Graph of y = sin θ 

y 
1.0 

0.5 

0 

20.5 

21.0 

▸ Figure 1.10 Graph of y = cos θ 

y 
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When plotted graphically, both the sine and the cosine 

functions generate periodic waveforms. Both functions 

vary between a maximum of 1 and a minimum of −1 and 

so are said to have an amplitude  of 1.  Both functions  

have a period of 360° or 2π radians, after which the cycle 

repeats. 

The tangent function does not generate a smooth 

waveform, although the graph is still periodic with a period 

of 180° or π radians. 

Some values for the trigonometric ratios are given in 

Table 1.7. 

 
▸ Table 1.7 Values of the trigonometric ratios for angles 

between 0° and 360° 
 

θ ° θ rad sin θ cos θ tan θ 

0 0 0 1 0 

30 0.52 0.50 0.87 0.58 

60 1.05 0.87 0.50 1.73 

90 1.57 1.00 0 ±∞ 

120 2.09 0.87 −0.50 −1.73 

150 2.62 0.50 −0.87 −0.58 

180 π 0 −1.00 0 

210 3.67 −0.50 −0.87 0.58 

240 4.19 −0.87 −0.50 1.73 

270 4.71 −1.00 0 ±∞ 

300 5.24 −0.87 0.50 −1.73 

330 5.76 −0.50 0.87 −0.58 

360 2π 0 1.00 0 

 
sine and cosine rules 

The basic definitions of the trigonometric functions sine, 

cosine and tangent only apply to right-angled triangles. 

However, the sine and cosine rules can be applied to any 

triangle of the form shown in Figure 1.12. 

▸ The sine rule: 
   a = b = c  

▸ Figure 1.11 Graph of y = tan θ 
sin A sin B sin C 

 

 
 
 

90° 180° 270° 360° x 

 

 
 
 

 
90° 180° 270° 360° x 
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Look for the set-up screen on your calculator and select Rad. You will find that the D 

(for degrees) usually displayed at the top of the screen changes to R (for radians). 

Before carrying out any work involving trigonometry, you should check that you are 

using the appropriate setting on your calculator. Use some simple examples to show 

what might happen if you get it wrong. 

Hint 

 
 

Check that you can set up and use a scientific calculator in both degree and radian 

modes. 
P A U s E P O I N T  
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B 

c a 

A C 

b 

▸ Figure 1.12 Naming conventions when applying the sine rule and the cosine rule 

▸ The cosine rule can take three different forms depending on the missing value to be 
determined: 

a2 = b2 + c2 − 2bc cos A 

b2 = a2 + c2 – 2ac cos B 

c2 = a2 + b2 – 2ab cos C 
 

Vectors and their applications 

Many quantities encountered in engineering, such as force and velocity, are only fully 

described when magnitude, direction and sense are known (see Figure 1.13). Such 

quantities are called vectors. When adding or subtracting vectors you must always  

take into account the direction in which they act. 

Diagrammatic representation of vectors 

▸ The length of the arrow represents the magnitude of the vector. 

▸ The angle θ specifies the direction of the vector. 

▸ The head of the arrow specifies the positive sense of the vector. 

Vector addition 

To find the sum (or resultant) of two vectors v1 and v2, you can represent the situation 

graphically by drawing a vector diagram. In Figure 1.14 the two vectors are drawn 

to scale, forming a triangle or parallelogram from which the characteristics of the 

resultant vector (vT) can be measured. 

Phasors 

Phasors are rotating vectors that are useful in analysing sinusoidal (sine-shaped) 

waveforms. Figure 1.15 shows the relationship between a phasor and the sine wave it 

 
 

 
▸ Figure 1.13 A vector has 

magnitude, direction and sense 

 

 

a) 

v1 
vT 

 
v2 

represents. 

Vector rotation 
ω rads21 

90° 

 
 

1Am 

  v2  
b) 

v1 
vT 

 
 

 
180° 

A 30° 

ωt 0° 

 
 
 

   30° 
ωt 

 
 
 

90° 

A(t) 5 Am sin(ωt 1 Φ) 

 
180° 

° 

 
 

360° 

 

▸ Figure 1.14 Vector addition 

can be done using a) the 

parallelogram rule or b) the 

triangle rule 

 

270° 

Rotating phasor 

2Am 

Sinusoidal waveform in the time domain 

▸ Figure 1.15 How the rotating phasor relates to the sinusoidal waveform 

 

When using phasors in the analysis of alternating current, the length of the phasor 

 

 

 

270 360° 
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represents the peak voltage (V) or amplitude of the sinusoidal waveform, and the 

phasor rotates about a point of origin with an angular velocity of ω.  



UNIT 1 Learning aim A 

17 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

▸ Figure 1.16 Phasor representing 
the sinusoidal waveform 

v = V sin (ωt + Φ), where Φ is the 

phase shift from the standard 

waveform 

At any fixed instant in time (t), the phasor will have a phase angle (θ) and its vertical 

component will be equal to the instantaneous voltage (v) on the corresponding sine 

wave. 

So the instantaneous voltage (v) at any point on the waveform is 

v = V sin θ 

In terms of angular velocity, this gives 

v = V sin(ωt) 

This relationship is true when the waveform begins its cycle when t = 0. However, it is 

common to have a waveform that is said to lead or lag the standard waveform. This 

phase difference (see Figure 1.16) is expressed as an angle (Φ), so that 

v = V sin (ωt + Φ) 

The angular velocity of the phasor (ω) is related to the frequency of the waveform (f) 

by 

ω = 2πf 

 

 
 

Mensuration 

It is very common for an engineer to need to calculate the surface area or volume 

of three-dimensional shapes (see Figure 1.17); for example, to determine the 

number of tiles required to line a swimming pool or to find the capacity of a 

cylindrical storage tank. There are several important formulae that can help you 

do this (see Table 1.8). 

r 

Cylinder Sphere Cone 

▸ Figure 1.17 Some commonly encountered regular solids and their dimensions 

▸ Table 1.8 Standard formulae for the surface area and volume of some regular solids 
 

Regular solid Curved surface area (CSA) Total surface area (TSA) Volume 

Cylinder 2πrh 2πrh + 2πr2 = 2πr(h + r) π2rh 

Cone πrl πr2 + πrl = πr(r + l) 1πr 2h 
3 

Sphere 4πr2 
  4πr3 

3 

Often, an apparently complex object can be broken down into a series of regular 

solids. 

Consider the different types of systems they are used to describe. 

Use a diagram to explain the relationship between a phasor and the sinusoidal 

waveform it describes. 

Hint 

 

Explain the difference between a vector and a phasor. P A U s E P O I N T  
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Assessment practice 1.1 

1 A small boat is capable of a maximum velocity in still water of v km h−1.  On a journey upriver against a current     

with velocity vc km h−1, the boat travels at its full speed for 2 hours and covers 16 km. On a journey back downriver 

with the same current flow, the boat travels at full speed for 1 hour and 20 minutes and covers 18 km. Establish   

and then solve a pair of simultaneous linear equations to determine the maximum velocity of the boat v and the 

current vc. (4 marks) 

2 Scrap transformers have been collected for recycling. In total, 203 transformers weigh 403.4 kg. It is found that the 

transformers come in two different types, which weigh 1.8 kg and 2.3 kg, respectively. Establish and then solve a   

pair of simultaneous linear equations to determine the number of each type of transformer collected. (4 marks) 

3 The motion of two vehicles is described by the linear equations 

27 = v – 3t 

13 = v – 4t 

By solving this pair of simultaneous equations determine: 

a) the time t at which both vehicles will be travelling with the same velocity 

b) the corresponding velocity v at  that point. (2 marks) 

4 The time t (years) taken for a radioactive isotope contained in stored nuclear waste to decay to 5% of its original 

quantity is given by the equation 

5 = 100 × 2 1622 

Solve the equation to find the time t. 

Show evidence of the use of the laws of logarithms in your answer. (2 marks) 

5 An engineer has been given a drawing (see Figure 1.18) of a triangular plate with minimal dimensional detail. 
 

A B 6 m 

20° 50°    

C 

▸ Figure 1.18 Engineering drawing of a triangular plate 

Calculate the lengths of the sides A, B  and C. (4 marks) 

6 A pair of dividers used for marking out has legs that 

are 150 mm long, as shown in Figure 1.19. The angle 

α between the legs can be set to a maximum of 

60° by rotating the adjustment screw. 

a) Use the sine rule to calculate the maximum 

distance that can be set between the points 

of the dividers when α = 60°. 

b) Use the cosine rule to calculate the value of 

angle α when the points of the dividers are 

set to a distance of 38 mm. 

150 mm a 

 

 

 

▸ Figure 1.19 A pair of dividers 

 
 
 
 

 
(4 marks) 

7 The displacement s of an accelerating body with respect to time t is described by the equation 

s = t2 − 7t + 12 

Using factorisation, solve this equation to determine the values of t for which s = 2. (3 marks) 

8 Use the formula for solving quadratic equations to determine the radius r of an enclosed cylinder which has a total 

surface area (TSA) of 12.25 m2 and a height h of 1.2 m, where 

TSA = 2πrh + 2πr2 (4 marks) 
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Non-concurrent forces – forces that do not all pass 

through the same point. 

 

Magnitude – the size of a force. 

Direction – the orientation of the line in which the force 

is acting (the line of action). 

sense – the direction along the line of action in which 

the force acts. 

 

 
 

 

 

9 A technician has been given an engineering drawing of a circular component B 
(see Figure 1.20) where the arc length AB is 23 cm and the radius r is 16 cm. 

Calculate the angle θ in degrees to allow the technician to use a Vernier A 

protractor to mark out the component accurately. (2 marks) r 
θ 

 
 

 

▸ Figure 1.20 Engineering  drawing 
of a circular component 

 

For each of the problems in this assessment practice, use the following stages to guide your progress through the task. 

Plan 
• What important information is provided in the question? Can this information be summarised or collated to make it 

easier to digest? 

• Will a sketch help me to visualise what is being asked? 

Do 
• I am confident that I have interpreted the question correctly, and I have a plan to approach finding a solution. 

• I recognise when a solution is clearly incorrect and will challenge my previous approach and try an alternative. 

Review 
• I can explain the engineering principles that underpin my approach to a task. 

• I can clearly follow the method I used to complete a task and explain my reasoning at each stage. 
 

 B Static engineering systems 
 

B1 Static engineering systems 

Concurrent and non-concurrent coplanar 
forces 

Mechanical systems often contain components that exert 

forces that push or pull other components. A force will  

tend to cause a change in the motion of an object, but in a 

static system all the forces are balanced, and so the system 

will either remain at rest or be in motion with constant 

velocity. 

As mentioned in the previous section on mathematical 

methods, forces are vector quantities, so to define them 

fully we need to know their magnitude, direction and 

sense. 

Where systems contain multiple forces, it is possible to 

represent the forces visually in a space diagram, free body 

diagram or vector diagram. 

Consider a mass suspended by two wires under tension. 

A space diagram is a sketch of the physical arrangement  of 

the system being considered, like that shown in Figure 1.21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

▸ Figure 1.21 Space diagram showing an object suspended by 
two wires 

θ1 
θ2 
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Resultant – the force that represents the combined 

effect of all the forces in a system. 

 

 

θ1 
θ2 

Fg 

 
θ2 

 
θ1 

En
gineerin

g Prin
ciples 

 
 

A free body diagram is a sketch containing just the forces 

acting on the system or the part of the system that you are 

interested in, as shown in Figure 1.22. 
 

F1 F2 

 
 
 
 

 
▸ Figure 1.22 Free body diagram showing the forces acting on 

the suspended mass (which is represented by a point) 

 
A vector diagram is a sketch in which the lengths of the  

lines representing the force vectors correspond to the 

magnitudes of the respective forces. The vectors may also 

have been rearranged to form a triangle of forces as shown 

in Figure 1.23. (Similarly, larger numbers of force vectors 

can be arranged into a polygon of forces.) 

 
One way to add or subtract vector quantities is to 

split each vector into components acting in specific, 

perpendicular directions. A force acting in  any  direction 

can be resolved into a vertical and  a  horizontal 

component. The horizontal components of multiple forces 

can be simply added to calculate a single horizontal force. 

Similarly, the vertical components of multiple  forces  can 

be simply added to calculate a single vertical force. These 

can then be recombined into a single resultant force 

that represents the combined effect of all the original 

individual forces. 

Splitting any vector into its horizontal and vertical 

components will involve the use of trigonometry and/or 

Pythagoras’ theorem. 

Figure 1.24 shows how a single force F can be 

resolved into a horizontal component Fh and a vertical 

component Fv. 

 
 
 

Fg Fv
 

 
 

 

 
▸ Figure 1.23 Vector diagram with the three forces rearranged 

into a triangle 

 
Resolution of forces in perpendicular directions 

When analysing a system in which multiple forces act 

on a body, it may not be obvious what the overall effect 

of those forces will be. What we need is a method of 

adding the forces together to find their combined effect, 

known as the resultant force acting on the body. We can 

Fh 

▸ Figure 1.24 Force vector resolved into vertical and horizontal 
components 

 

In the arrangement shown in Figure 1.24: 

Fv = F sin θ 

Fh = F cos θ 
Fv 

= tan 
Fh 
F2 = F2 + F2 

v h 
combine forces graphically by drawing a vector diagram, 

but here we will consider an alternative approach using the 

resolution of forces. 

When several forces act on a body, apply the same 

principles to each of the forces. 

 

 

θ 
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Draw an example of each for the same system. 

 

Hint 

 

Explain the difference between a space diagram, a free body diagram and a vector 

diagram. 
P A U s E P O I N T  
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to give the resultant 

the force required to 

bring this system into 

equilibrium, so it also has 

magnitude 18.39 N and 

direction 55.3° below 

the horizontal, but it will 

have a negative sense. 

 

 

55.3° 

tan θ = 
15 . 12 

= 1.44 
10 . 47 

θ = 55.3° (using unrounded values) 

The magnitude of the resultant can be calculated 

using Pythagoras’ theorem: 

Fr = √15. 122 + 10. 472 = 18.39 N 

So the resultant of this system of forces has 

magnitude 18.39 N and acts in a direction 55.3° 

below the horizontal with a positive sense. 

The equilibrant is 

 

 

▸ Figure 1.25 System of three concurrent coplanar forces 

 

First, establish the convention that the positive 

vertical direction is up and the positive horizontal 

direction is to the right. 

Resolve each vector into its vertical and horizontal 

components using the formulae on the previous page. 

 

 

= −15.12 N 

Find the sum of the horizontal components: 

 

= +10.47 N 

Figure 1.26 shows that the resultant force Fr is 

acting in the positive sense in a direction θ° below 

the horizontal, where: 

 
 

  

 

Find the resultant and equilibrant for the system 

 

 

 

 
 

 
 

Conditions for static equilibrium 

A system of forces in static equilibrium will have no tendency 
to move because all the forces acting in the system are 
perfectly balanced. The resultant force for a system in static 
equilibrium is zero. This also means that the horizontal and 

vertical components of all the forces are such that: 

ΣFv = 0 
ΣFh = 0 

For a system of concurrent forces, these equations are 

enough to define static equilibrium. However, in a non- 
concurrent system of forces, where the lines of action do 
not intersect at the same point, there could be a tendency 
for the system to rotate. 

The moment of a force describes the tendency of a force to 
produce rotation about a pivot point or centre of rotation. 

The moment of a force (M) about a pivot is calculated 
by multiplying the magnitude of the force (F) by the 

perpendicular distance (s) from the pivot point to the line 

M = Fs 

So, for a system of non-concurrent forces, there are three 
conditions that must be met for static equilibrium: 

ΣFv = 0 
ΣFh = 0 
ΣM = 0 

 

Equilibrant – the force that when applied to a system 
of forces will produce equilibrium. This force will be 
equal in direction and magnitude to the resultant but 
have the opposite sense. 

Moment – the tendency of a force to rotate the object 
on which it acts. 

of action of the force. 

 

 

 

  

  

Find the equilibrant for the system of non- 

concurrent forces shown in Figure 1.27 . 
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▸  Figure 1.29 The system of forces, showing 
the equilibrant that would bring it into static 

 

The equilibrant has magnitude 10.59 kN, direction 

45.4° above the horizontal and positive sense, and 

the perpendicular distance from its line of action to 

point A is 0.1 m. 

 
 

  

  

Taking moments about A: 

ΣMA = (10.59 × x) − (2 × 0.53) + (6 × 0) + (5 × 0) 

For equilibrium, ΣMA = 0, so 

10.59x = 2 × 0.53 

x = 0.1 m 

You can now fully define the equilibrant, which  

when applied to this system of forces would bring it 

into static equilibrium (see Figure 1.29). 
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(Note that to define the equilibrant fully for a 

non-concurrent system of forces, you will need 

to find its magnitude, direction, sense and the 

perpendicular distance from its line of action to the 

centre of rotation of the body.) 

solution 

Find the sum of the vertical components: 

ΣFv = 0 – 6 sin 25 – 5 = −7.54 kN 

Find the sum of the horizontal components: 

ΣFh = −2 – 6 cos 25 + 0= −7.44 kN 

ΣFh 5 27.44 

θ 
 

Fr ΣFv 5 27.54 
 
 

 

▸ Figure 1.28 Vector diagram showing how the sums of 
the vertical and horizontal components are combined 

to give the resultant 
 

Figure 1.28 shows that the resultant Fr is acting 

in the negative sense in a direction θ below the 

horizontal, where: 

tan = 
7 . 54 

= 1.01 
7 . 44 

θ = 45.4° 

The magnitude of the resultant can be calculated 

using Pythagoras’ theorem: 

Fr = √7. 542 + 7. 442 = 10.59 kN 

You can now say that the equilibrant has magnitude 

10.59 kN, direction 45.4° above the horizontal and 

positive sense. 

To complete the description  of  the  equilibrant 

you must now take moments about some point in 

the system. This could be anywhere, but selecting 

point A in Figure 1.27 will simplify the calculations 

 
 
 
 
 
 
 
 
 
 

 
simply supported beams 

Beams have been used extensively for thousands of 

years to support structures and can be seen in 

everything from bridges and aircraft carriers to the 

playground see-saw. 

When dealing with beams, we often need to consider 

two different ways in which they are loaded: 

because the moments of the 6 kN and 5 kN forces 

are zero about this point. 

Before starting the calculations, you should establish 

the convention that clockwise moments are positive 

and anti-clockwise moments are negative. 

Let the perpendicular distance from the 

equilibrant’s line of action to point A be x m. 

▸ Concentrated loads – a narrowly focused force that 

can be assumed to act at a specific point along the 

length of the beam; for example, the weight of a car 
parked on a bridge. 

▸ Uniformly distributed loads (UDL) – a force 

distributed along the full length (or a defined 

section) of the beam, for example, the weight 
of the bridge itself. 
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Av = 
275 + 180 

= 30.33 kN 
15 

Now check that the other requirements for static 

equilibrium are met by considering the horizontal 

and vertical components of the forces acting on the 

beam. For equilibrium these must sum to zero. 

Find the sum of the vertical components: 

 

Find the sum of the horizontal components: 

 

Once calculated and checked, state the solution 

clearly: 

The support reaction at point A is 30.33 kN 

vertically upwards. 

The support reaction at point B is 39.67 kN 

vertically upwards. 

Bv = 
120 + 475 

= 39.67 kN 
15 

To find the support reaction Av take moments 

about point B. 

ΣMB = −(5.5 × 50) − (9 × 20) + (15 × Av) = 0 

▸ Figure 1.33 Free body diagram of the simply 
supported beam 

To find the support reaction Bv take moments about 

point A. Because the beam is in static equilibrium, 

you know that these moments must sum to zero. 

ΣMA = (6 × 20) + (9.5 × 50) − (15 × Bv) = 0 

   

  

 

▸ Figure 1.32 Space diagram of a simply supported beam 

 

Draw a free body diagram of the beam, as in 

 

(Note that the UDL can be treated as a point load 

acting at the centre of the distribution.) 

9.5 m 5.5 m 
 

 

  

 
 

 

Determine the support reaction for the simply 

 

 

 

 
 

 
 

Reactions 

A simply supported beam is supported from below at 

two points, A and B. At each of these points, support 

reaction forces act on the beam to maintain the static 

equilibrium of the system. These can be calculated if we 

know the magnitude and position of the forces acting on 

the beam. 

The type of support used dictates the direction in which 

the support reaction can act. 

▸ Rollers provide a support reaction normal 

(perpendicular) to their point of contact with the beam. 
This is vertically upwards in the case of a horizontal 

beam (see Figure 1.30). 

▸ Pins can provide a support reaction in any direction, 

so there can be a vertical and a horizontal component 
to the support reaction provided by a pinned joint (see 

Figure 1.31). 

 

 
 
 
 
 

 
Reaction 
force (Fr) 

▸ Figure 1.30 Roller support 

 
 

Fh 

 
Free rotation 
Free horizontal 
movement 
Provides vertical 
support only 

 
 
 
 
 

 
Free rotation 
Provides 
vertical 
and horizontal 
support 

 
Fv 

▸ Figure 1.31 Pin support 
 

 

Normal reaction – the force that  acts perpendicular to 

a surface upon an object that is in contact with the 

surface. 
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Both methods give the same solution, which is that 

the shear stress in the rivet is 31.8 MPa. 

2 × 3 . 14 × 10−4 

= 31.8 × 106 Pa or 31.8 MPa 

 
 

 

= 31.8 × 106 Pa or 31.8 MPa 

In the second method, the shear area (Aτ) is equal  

to twice the cross-section of the rivet and the shear 

force (F) is the whole of the applied load. 

20 × 103 

 

In the first method, the shear area (Aτ) is the cross- 

section of the rivet and the shear force (F) is only half 

the applied load. 

10 × 103 

 
−4 2 = 3.14 × 10 m 

 0. 02 
 

  
 

A rivet has diameter (d) 20 mm and secures two 

rods together in the arrangement shown in Figure 

1.36. Find the shear stress in the rivet. 
rivet 

 

 

 
 

 

The rivet in this example is said to be in double 

shear. To solve this type of problem, consider either 

half the load acting on a single shear area (in this 

case the cross-sectional area of the rivet) or the 

whole load acting over the two shear areas (in this 

case twice the cross-sectional area of the rivet). 

First, calculate the cross-sectional area of the rivet 

in m2. 
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τ 

 

 

 
 

B2 Loaded components 
Table 1.9 summarises the formulae needed to calculate 

direct and shear loading. 

▸ Table 1.9 Summary of direct and shear loading 
 

Operation Direct loading shear loading 

Stress σ =
 F  
Aσ 

τ =
 F  
Aτ 

Strain ε = 
DL 
L 

γ = 
a

 
b 

Elastic 
constants 

Modulus of 

elasticity, E = 
σ

 
ε 

Modulus of 

rigidity, G = 
τ
 

γ 

Forces acting on a body may be separated into two 

different types: 

▸ direct forces – include tensile forces which tend to 

stretch and pull apart a material, and compressive 

forces (acting in the opposite direction) which tend to 
squash or compress a material. 

▸ shear forces – forces cutting across a material which 
tend to shear or cut it apart. 

 

stress 

When either direct or shear forces act on a body, opposing 

reaction forces are distributed within the material and it is 

said to be stressed or under stress. 

Stress is therefore a measure of the load distribution within 

a material and is expressed as the load carried per unit   

area of material. The unit of stress is newton per square 

metre (N m−2) or pascal (Pa), where 1 N m−2 = 1 Pa. 

We can consider two types of stress – direct and shear. 

▸    direct stress (   ) = 
normal force (F)  

(see Figure 1.34) 
area ( Aσ ) 

 
Area parallel to 
shear stress 

 
 

▸ Figure 1.35 The area Aτ considered in shear stress 

 

Area perpendicular 
to direct stress 

 
 

 

▸ Figure 1.34 The area Aσ considered in direct stress 

▸ shear stress ( ) =
 shear force (F) 

(see Figure 1.35) 
shear area ( Aτ ) 

Consider all the conditions that must be fulfilled for a body to be in static equilibrium. 

Where a non-concurrent system is not in equilibrium, explain all the characteristics 

required to fully define the resultant and describe its relationship to the equilibrant. 

Hint 

 

Describe what is meant by static equilibrium in a non-concurrent system of forces. P A U s E P O I N T  

 Aσ 
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= 29.8 × 106 Pa = 29.8 MPa 

The compressive stress in the punch is 29.8 MPa. 

1.26 × 10−3  

  

Using the formula for direct stress: 

   A = 
π d2 

= 
π × 0.042 

= 1.26 × 10−3 m2 

b) Compressive stress is a direct stress. 

The area (Aσ) in this case will be the cross- 

sectional area of the punch: 

 

so F = τmaxAτ = (200 × 106) × (1.88 × 10−4) 

 

The force required to punch out the brass disc is 

37.6 kN. 

 

A press tool is required to punch out 40 mm 

diameter discs from a brass plate that is 1.5 mm 

thick and has a shear strength of 200 MPa. 

Calculate the force required to punch out the 

disc. 

Calculate the compressive stress in the punch. 

 
 

You are given the following values, which have 

been converted into standard units where 

necessary: 

• diameter d = 40 mm = 0.04 m 

• thickness t = 1.5 mm = 0.0015 m 

• maximum shear strength 

 

For the punch to cut through the brass, the 

maximum shear strength of 200 MPa must be 

applied over the shear area. 

In this case, the shear area (Aτ) will be equal to 

the circumference of the brass disc multiplied by 

its thickness: 

Aτ = πd × t = π × 0.04 × 0.0015 

= 1.88 × 10−4 m2 

 

 

γ 

 

 
 

 
 

Tensile and shear strength 

Tensile and shear strength are material-specific properties 

that specify the maximum tensile and shear stresses that 

can be applied to the material. If either the tensile or the 

shear strength of a material is exceeded, the material will 

rupture. 

 

strain 

When a material is subjected to an externally applied 

stress, it has a tendency to change shape. Strain quantifies 

the deformation of a body as a proportion of its original 

length. As strain is the ratio of two lengths, it has no units. 

Again, we can consider two types of strain – direct and 

shear. 

▸ direct strain (ε) = 
change in length (DL) 

original length (L) 

(see Figure 1.37). 
 
 
 

 

L 

 
 
 

 

▸ Figure 1.37 Direct strain 

 
change in length (DL) 

▸   shear strain (  ) = 
original length (L) 

(see Figure 1.38). 

 
F 

 
 
 

∆L 
 
 
 
 
 

L 
 

F 

▸ Figure 1.38 Shear strain 
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Elastic constants 
A material is considered to perform in its elastic 

region while any change in strain brought about as a 

consequence of an applied stress will reduce back to zero 

once that stress is removed. Figure 1.39 shows a typical 

stress–strain curve for a ferrous metal. The elastic region is 

that part of the curve below the yield point. 

 
The modulus of elasticity (E), also known as Young’s 

modulus, expresses the linear relationship between direct 

stress and direct strain exhibited by a material in the part  

of the stress–strain curve below the elastic limit. Its unit is 

newton per square metre (N m−2). 

modulus of elasticity (E) =  
direct stress (σ)

 

direct strain (ε) 

A Elastic region 
B Limit of proportionality 
C Yield point 

D Ultimate tensile strength (UTS) 
E  Fracture point 

 
D 

E
 

 

The modulus of rigidity (G) is a similar ratio, which 

expresses the linear relationship between shear stress and 

shear strain observed in many materials. Its unit is newton 

per square metre (N m−2). 

modulus of rigidity (G) =  
shear stress (τ)

 

shear strain (γ) 

 
 

 

Strain (ε) 

▸ Figure 1.39 Typical stress–strain curve for a ferrous metal 

 
 

 

Case study 

 

The UK’s longest suspension bridge 

The Humber Bridge in Humberside is a suspension 

bridge crossing the Humber estuary. The bridge’s 

structure relies on the strength of the two main cables 

used to support it. 

Each of the main cables supporting the 1410 m central 

span is made up of bundles of 14 948 individual 5 mm 

diameter steel wires. 

The steel used in the cables has an ultimate tensile 

strength (UTS) of 1540 MPa and a modulus of elasticity 

of 200 GPa. 

When fully loaded, each of the main cables carries a 

load equivalent to 19 400 tonnes in tension. 

The length of the unloaded cables was 1890 m (at 15°C) 

when they were manufactured. 

 
 
 
 
 
 
 
 

 
▸ Humber Bridge 

Check your knowledge 

1 Calculate the direct stress in each cable when it is 

fully loaded. 

2 Calculate the corresponding direct strain for the 

cable. 

3 Calculate the corresponding extension of the cable 

and its total length when in service. 

Use a sketch to illustrate each case. 

Sketch a system in which a component is in both direct and shear stress. 

Hint 

 

Explain the difference between shear stress and direct stress. P A U s E P O I N T  

St
re

ss
 (

σ
) 



26 Engineering Principles 

 

 

 

 
 

 
 

Assessment practice 1.2 

1 Figure 1.40 shows a system of four non-concurrent coplanar forces 

acting on the corners of a rectangular plate measuring 3 × 8 m. 

60N 

90N 
 

135° 
 
 
 
 

 

 
For each of the problems in this 

assessment practice, use the following 

stages to guide your progress through 

the task. 

Plan 
• What engineering principles will be 

involved in answering the question? 

• Do I understand exactly what will be 

required to form a complete solution 

to the problem? Am I comfortable in 

how to approach each part? 
Do 

80N 
70° 

 
 

150N 

• I can organise  my  work  logically 

and systematically, annotating my 

solutions with notes that explain my 

approach. 

▸ Figure 1.40 A system of four non-concurrent coplanar forces 

Calculate the magnitude, direction and sense of the resultant force 

for this system, and find the position of its line of action relative to 

point A. (7 marks) 
 

2 Figure 1.41 shows a simply supported beam in static equilibrium. 

• I can use sketches effectively to help 

me visualise a problem and explain 

my approach to solving it. 

Review 
• I can give possible real-world 

applications of the principles used 

to solve the problem and explain 

 
1.5 m 

2 kN 15 kN 

2.3 m 1.8 m 7 kN UDL 
why these are important in an 

engineering context. 

• I can explain to others how best to 

A B approach similar problems. 

 

▸ Figure 1.41 A beam in static equilibrium 

Calculate the support reaction forces at points A and B. (4 marks) 
 

3 On a suspension bridge the vertical support wires attaching the roadway 

to the main suspension cables are each designed to support 2 × 106 N 

when the bridge is fully loaded. The support wires are connected to the 

roadway using pinned joints as shown in Figure 1.42.  Each pin is 105 mm 

in diameter and has a shear modulus of 160 × 109 Pa. 

 
Support wire 

 

Pin 

 

Roadway 

▸ Figure 1.42 Pinned joint connecting a support wire of the bridge to the 
roadway 

a) Calculate the shear stress in the pin when the bridge is fully loaded. 

b) Calculate the corresponding shear strain for  the pin. (4 marks) 

A 
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a = 
9. 722 − 2. 782 

= 0.022 m s−2 (to 2 s.f.) 
2 × 2000 

The cyclist’s acceleration is 0.022 m s−2. 

a = v 2 − u 2 

2s 
To calculate a, substitute the numerical values from 

the question into the formula: 

v = 35 km h−1 = 
35 × 1000 m 

= 9.72 m s−1 
3600 s 

To choose the appropriate equation to solve this 

particular problem, find the one that includes only the 

variables involved. Here these are a, s, u and v, which 

corresponds to the SUVAT equation v2 = u2 + 2as. 

Rearrange the equation to make a the subject: 

3600 s 
u = 10 km h−1 = 

10 × 1000 m 
= 2.78 m s−1 

A cyclist accelerates from 10 km h−1 to 35 km h−1 

over 2000 m of track. Calculate the acceleration of 

the cyclist. 

 

When approaching this problem, you should 

analyse the question carefully and identify the 

SUVAT variables that are mentioned: 

s = 2000 m, u = 10 km h−1, v = 35 km h−1, a = ?, 

t = not given 

If you can identify three out of the five SUVAT 

variables you will be able to calculate the missing 

values. 

Next, examine the units for each variable given in 

the question. Where these are not standard units, 

they must be converted before you begin your 

calculations. In this example both u and v are in 

km h−1, so you need to convert them to m s−1. 
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 C Dynamic engineering systems 

 

C1 Dynamic engineering systems The SUVAT equations of motion are: 
▸ s = 1(u + v)t 

As well as working with static systems, engineers are also 2 
1

 

interested in moving objects. This section introduces some 

of the basic principles and techniques that are used to 

understand dynamic systems. 

Dynamic systems, by definition, are systems that involve  

the relative movement of several component parts or 

movement of the system as a whole. In this section, we will 

see how displacement, time, velocity and acceleration are 

related and how you can calculate the work done and the 

power required to overcome a resistance. 

Kinetic parameters and principles 

Kinetic parameters describe the uniform linear motion of 

an object over time. They include displacement, velocity 

and acceleration. 

▸ s = ut + 2at2 

▸ v = u + at 

▸ v2 = u2 + 2as. 

Applying the sUVAT equations 

A huge range of problems involving the linear motion of 

objects can be solved using the SUVAT equations. 

 

 
 

The relationships between the kinetic parameters that 

describe the motion of an object are defined using a 

set of equations that are based on the definitions of 

displacement, velocity and acceleration. 

These are often referred to as the SUVAT equations from 

the letters used to represent the variables involved: 

▸ Displacement (s) – the distance travelled by an object in 
time t. 

▸ Initial velocity (u) – the starting velocity of an object 
when t = 0. 

▸ Final velocity (v) – the final velocity of the object at 
time t. 

▸ Acceleration (a) – the uniform acceleration of an object 
over time t. 

▸ Time (t) – the period of time over which you will 

 

Displacement – the straight-line distance  between  

the start and finish positions of a moving object. Unit: 

metre (m). 

Velocity – the rate at which the displacement of an 

object changes over time. Unit: metre per second (m s−1). 

Acceleration – the rate at which the velocity of an 

object changes over time. Unit: metre per second 

squared (m s−2). 
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consider the motion of an object. 
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m2 

 
 

2 

 

 
 

 
 

Dynamic parameters and  principles 
Dynamic parameters link the motion of an object to 

the forces involved in causing, influencing or stopping 

that motion. There are a number of important dynamic 

parameters. Their definitions and associated formulae are 

listed below. 

Parameters of linear motion 

Force (F) – a push or pull acting on an object. In physics  a 

force is defined as any influence that tends to cause or 

alter the motion of an object. Unit: newton (N). 

static frictional force (Fs) – a force that must be overcome  

to set a sliding body in motion. The force (Fs) required to 

overcome static friction depends on the normal force (N) 

between the surfaces and their coefficient of static 

friction (µs). Unit: newton (N). 

Fs = µsN 

sliding (kinematic) frictional force (Fk) – a sliding  body 

once in motion must overcome kinematic frictional 

resistance to its motion. The force (Fk) required to 

overcome kinematic friction depends on the normal force 

(N) between the surfaces and their coefficient of kinematic 

friction (µk). Unit: newton (N). 

Fk = µkN 

Inertia force (Fi) – the resistance that an object of mass m 

has to any acceleration (a) that changes its state of motion. 

Unit: newton (N). 

Fi = ma 

Momentum (p) – the product of the mass (m) of a moving 

body and its velocity (v). Unit: kilogram metre per second 

(kg m s−1). 

p = mv 

Work done (W) – the energy used when a force moves    

an object. It is the product of the applied force (F) and the 

associated displacement (s). Unit: newton metre (N m) or 

joule (J). 

W = Fs 

Power (P) – the average rate of doing work (W) over time 

(t). Unit: joules per second (J s−1) or watt (W). 

P = 
W 

= 
Fs

 

 
Gravitational potential energy (Ep)  –  the  potential 

energy possessed by a body of mass m in a gravitational 

field (g) when raised to a vertical height (h). Unit: joule (J). 

Ep = mgh 

Kinetic energy (Ek) – the energy possessed by a body of 

mass (m )travelling with velocity (v). Unit: joule (J). 

Ek = 1mv2 

Newton’s laws of motion 

Newton’s laws of motion are fundamental to our 

understanding of dynamics. 

▸ Newton’s first law of motion states that ‘a body 
continues in its present state of rest or uniform motion 

in a straight line unless it is acted upon by an external 

force’. 

▸ Newton’s second law of motion states that ‘the rate of 
change of momentum of a body is directly proportional 

to the resultant force that is producing the change’. 

▸ Newton’s third law states that ‘to every acting force 
there is an equal and opposite reacting force’. 

It is Newton’s second law that underpins the derivation    

of an important equation that establishes the relationship 

between force (F), mass (m) and acceleration (a): 

F = ma 

Principle of conservation of momentum 

The principle of conservation of momentum states that 

‘the total amount of momentum in a system remains 

constant unless the system is acted upon by an external 

force’. 

Consider two bodies of known masses m1 and m2 moving   

in the same direction with velocities v1 and v2, respectively, 

as shown in Figure 1.43. The two bodies then collide and 

begin to move together with velocity v3. 

v1 v2 v3 

 
1 5 

 
 

▸ Figure 1.43 Conservation of momentum of two moving 

t t 
bodies that collide and then move together 

Instantaneous power (Pi) – the product of force (F) and 

velocity (v). Unit: joules per second (J s−1) or watt (W). 

Pi = Fv 

Weight (Fg) – the force exerted by a gravitational field (g) 

on a body with mass (m). Unit: newton (N). 

Fg = mg 

 

Given that no external forces have been applied, the 

momentum prior to impact equals the momentum 

afterwards: 

p1 + p2 = p3 

m1v1 + m2v2 = (m1 + m2)v3 

m1 
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Case study 

 

Flood defences 

In 2016, many parts of 

the UK suffered serious 

flooding. The damage 

to property and 

infrastructure such as 

roads and bridges was 

severe, and the lives 

of many people were 

badly affected. 

A common way of 

reinforcing river banks 

damaged by floodwater 

 
 
 
 
 
 
 
 
 
 
 
 

▸ Hydraulic drop hammer 
piling rig 

Piles are installed using piling rigs (which are effectively 

large hammers) that are able to drive the piles vertically 

downwards. Each blow of the drop hammer moves the 

pile a little further into the ground. 

The piling rig in the photograph has a 200 kg drop 

hammer, which is raised 3 m before being dropped onto 

the pile. It is inserting a pile that weighs 500 kg, which 

moves 125 mm further into the ground with each strike 

of the hammer. 

Check your knowledge 

1 What principles might you apply to the analysis of 

inserting a pile in this way? 

is by using steel piles driven deep into the ground to 

prevent further erosion. The piles are installed side by 

side, forming a protective wall from the surface of the 

water down and through the river bed. 

2 Calculate the velocity with which the drop hammer 
hits the pile. 

3 Calculate the initial velocity of the pile and hammer 

moving together. 

4 Determine the force with which the ground is 

resisting the penetration of the pile. 

 

Principle of conservation of energy 

The principle of conservation of energy states that ‘energy 

cannot be created or destroyed, but it can be changed 

from one form into another’. 

 
In dynamics this means that the total energy within a 

system always remains the same. Any decrease in one type 

of energy leads to a corresponding increase in another. 

 

As a starting point, you should give your body a mass, an acceleration, an 

instantaneous velocity and a displacement from a starting point. 

Mark any external factors acting on the body that are required in order to determine 

the parameters of linear motion. 

Hint 

 
 

Draw a diagram of a body in motion and annotate it to show how each of the 

parameters of linear motion is calculated. 
P A U s E P O I N T  
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 ▸ Figure 1.44 The motion of a rollercoaster car 
along the rollercoaster track 

  
   

 

 

C vC 

A vA As shown in Figure 1.44, A rollercoaster car with mass 200 kg is 

stationary at point A before rolling down the track, passing point B  

at the bottom of the curve and then continuing up to point C at the 

top of the next curve. Throughout its motion along the track, the 

rollercoaster car has to overcome a frictional force of 200 N. 

Using the principle of conservation of energy, calculate the 

velocities at points B and C. 
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2 

2 

B √ 

C √ 

 

 
 

 
 

 

solution 

By the principle of conservation of energy, the total energy in the system is the same at points A, B and C. 

In this case the total energy (Etotal) at each stage is made up of gravitational potential energy (Ep), kinetic energy (Ek) 

and work done to overcome friction (W): 

Etotal = Ep + Ek + W 

Etotal = mgh + 1mv2 + Fs 

Consider point A where hA = 20 m, sA = 0 m, vA = 0 m s−1 

Then 

Etotal = (200 × 9.81 × 20) + (1 × 200 × 02) + (200 × 0) 

= 39 240 + 0 + 0 = 39 240 J 

At point A, all the parameters are defined, allowing us to establish that the total energy in the system is 39 240 J. At 

A this is made up entirely of gravitational potential energy. 

Now that you know the total energy in the system, you can calculate the velocity of the rollercoaster car at point B, where 

Etotal = 39 240 J, hB = 0 m, sAB = 30 m, vB = ? 

Etotal = Ep + Ek + W 

39 240 = (200 × 9.81 × 0) + (1 × 200 × vB
2) + (200 × 30) 

39 240 = 0 + 100vB
2 + 6000 

v = 
39 240 − 6000 

= ±18.23 m s−1 

100 

The negative value would mean that the rollercoaster car is travelling backwards, so we use only the positive value, 

vB = 18.23 m s−1. 

At point B, there is no longer any gravitational potential energy, 6000 J of work has been done to overcome the 

friction forces acting on the system, and the remaining energy has been transformed into kinetic energy now 

present in the moving rollercoaster car. 

A similar procedure can be carried out to determine the velocity at point C, where 

Etotal = 39 240 J, hC = 10 m, sAC = 50 m, vC = ? 

Etotal = Ep + Ek + W 

39 240 = (200 × 9.81 × 10) + (1 × 200 × vC
2) + (200 × 50) 

39 240 = 19 620 + 100vC
2 + 10 000 

v = 39 240 − 19 620 − 10 000 = ±9.81 m s−1 

100 

Again you want the positive value, so vC = 9.81 m s−1. 

At point C, 19 620 J of gravitational potential energy has been retained in the system, a total of 10 000 J of work 

has been done to overcome friction forces, and the remaining energy has been transformed into kinetic energy 

present in the moving rollercoaster car. 
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Rotational motion 

The fundamental parameters describing rotational motion 

are shown in Figure 1.45. 

V 

 
acting at a distance (r) from the centre of rotation. Unit: 

newton metre (N m). 

τ = Fr 

Work done (in uniform circular motion) (W) – the  

work done by a torque (τ) moving through an angular 

displacement (θ). Unit: joule (J). 
r ω 

W = τθ 
θ 

r Power (in uniform circular motion) (P) – the rate of work 

done expressed as the product of torque (τ) and angular 
velocity (ω). Unit: watt (W). 

▸ Figure 1.45 Basic parameters describing rotational motion 

Angular displacement (θ) – the angle in radians through 

which a point or line has been rotated about a specific 

point (the centre of rotation). Unit: radian (rad). 

Angular velocity (ω) – the rate at which angular 

displacement (θ) changes over time (t). Unit: radian per 

second (rad s−1). 

Δθ 

Δt 
Angular acceleration (α) – the rate at which angular 

velocity (ω) changes over time (t). Units: radian per second 

squared (rad s−2). 

P = τω 

Moment of inertia (I) – sometimes called angular mass,  

is used in calculations relating to rotational motion in 

a similar way to which mass is used for linear motion. 

The moment of inertia for a particular rotating body is 

dependent on the mass distribution around the point 

of rotation and can be complicated to determine. Its 

calculation is beyond the scope of this unit. 

Kinetic energy (of uniform circular motion) (Ek) – the 

energy possessed by a rotating body is calculated using its 

moment of inertia (I) and angular velocity (ω). Unit: joule 

(J). 
1 

Δω 
Ek = 2Iω2 

Δt 

Tangential velocity (v) – the linear velocity of a point 

moving in a circular path. All points in a rotating body  

share the same angular velocity (ω), but the tangential 

velocity of each point will depend on its distance from the 

centre of rotation (r). Unit: metre per second (m s−1). 

v = ωr 

Centripetal acceleration (a)  –  the  linear  acceleration 

acting on a rotating body towards its centre of rotation. It is 

defined in terms of the distance of the body from the centre 

of rotation (r) and either the angular velocity (ω) or the 

tangential velocity (v). Unit: metre per second squared (m s−2) 

a = ω2r = 
v 2

 

Torque (τ) – a turning force or moment that tends to cause 

rotational movement. It is defined by the sum force (F) 

Lifting machines 

Lifting machines are used to allow relatively small forces 

to lift heavy objects. They include inclined planes, pulleys 

and scissor jacks. For instance, a person is unlikely to 

be able to lift and support a vehicle to change a wheel 

without using a lifting machine. Anyone can exert enough 

force to operate a scissor jack, which by virtue of a simple 

mechanism is able to amplify this force to a level sufficient 

to lift the car. 

For all lifting machines, mechanical advantage (MA) is 

the ratio between the output force or load (Fl) and the 

input force or effort (Fe): 

MA = 
Fl

 

Fe 

 
 

ω = 

α = 
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As a starting point, you should give your body a moment of inertia, an angular 

velocity and a distance from the centre of rotation. 

Mark on the diagram any external factors acting on the body that are required in 

order to determine the parameters of rotational motion. 

Hint 

 
 

Draw a diagram of a rotating body and annotate it to show how each of the 

parameters of rotational motion is calculated. 
P A U s E P O I N T  
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The velocity ratio (VR) is the ratio between the distance 

moved by the effort (se) and the distance moved by the 

load (sl). Equivalently, it is the ratio of the velocity with 

which the effort moves (ve) to the velocity with which the 

load moves (vl): 
VR = 

se 
= 

ve
 

 
Figure 1.47 shows a pulley system with VR = 4. 

sl vl 

You already know that work done (W) is given by W = Fs. 

Applying this to the effort and load gives 

We = Fese 

Wl = Flsl 

The efficiency of a simple machine is given by the ratio of 

useful work output to work input. 

Useful work output is the work done in actually moving  

the load. All machines will also have to overcome friction 

forces. Work done against friction is wasted as heat, noise 

or other undesirable effects. 

The efficiency (η) of a simple machine with work input (We) 

and useful work output (Wl) is given by 

= 
Wl 

× 100% 
We 

Feffort 

 
 
 
 
 
 
 

▸ Figure 1.47 A system of pulleys with four rope sections 
supporting the load 

 

screw jack 

In a screw jack like the one shown in Figure 1.48, one 

complete rotation of a handle of length (r) causes the load 

to move a distance equal to the pitch of the screw thread 

(p). The velocity ratio (VR) is given by 

VR = 
2πr 

Efficiency can also be stated purely in terms of the 

mechanical advantage (MA) and the velocity ratio (VR): 

= 
MA 

× 100% 
VR 

Inclined plane 

It is thought that in the absence of cranes and other  

modern machinery, the ancient Egyptians used an inclined 

plane (see Figure 1.46) to lift the enormous stones used to 

construct the pyramids. By pulling the load up an inclined 

plane sloping at an angle (θ), the effort moves a distance (a) 

while the load is lifted through a vertical distance (b). 
VR = 

a 
= 

    a 
=

 1 
 

p 
Fload 

 

p 5 pitch of      
screw thread 

 
 
 

 
▸ Figure 1.48 Screw jack 

scissor mechanism 

 

r 

 
 
 

Feffort applied 
to turn handle 

b a sin θ sin θ 

 
a 

 

 
Feffort 

 
 
 
 

b 5 a sin θ 

The velocity ratio of a scissor mechanism is not constant – 

it varies continuously as the angle (θ) changes. 

 

 
inclined 
plane 

θ    

 
 

Fload 

▸ Figure 1.46 Inclined plane that can be used to lift a load Pulleys 

η 

η 
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The velocity ratio of a pulley system is equal to the number 

of rope sections supporting the load. 
 

 
▸ Figure 1.49 Scissor mechanism 

In the example shown in Figure 1.49, a small change in 

distance moved by the effort (δa) leads to a corresponding 

2 θ 

 
 
 

δa 
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(but not equal) small change in the distance moved by the 

load (δb). The velocity ratio depends on the geometry of 

the mechanism, but in this case 

VR = 
δa 

= 
    1 

 
δb tan θ 

This means that: 

▸ if θ < 45° then VR > 1, so a movement of effort (a) will 

 
operate a scissor mechanism. For each rotation of the 

screw, the dimension a reduces by a distance equivalent to 

the pitch of the thread (p), and this motion is transferred   

by the scissor mechanism to increase the dimension b. 

By combining the velocity ratios for the scissor and screw 

mechanisms, we get the velocity ratio for the scissor jack: 

VR = 1 × 2πr = 2πr  

produce a larger movement in load (b) 

▸ if θ = 45° then VR = 1, so a movement of effort (a) will 
produce an equal movement in load (b) 

tan θ p p tan θ 

 Fload 

▸    if θ > 45° then VR < 1, so a movement of effort (a) will    Feffort (turning handle) 

produce a smaller movement in load (b). 
a

 
r 

scissor jack b 
θ

 

Car drivers often use a jack that incorporates  a scissor 
p

 

mechanism when fitting the spare wheel to their vehicle. 
Figure 1.50 shows a typical scissor jack, which uses a 

screw thread turned by a handle (just as in a screw jack, 

but here the screw does not lift the load directly) to 

 

Assessment practice 1.3 

▸ Figure 1.50 Scissor jack that combines a screw jack with a 
scissor mechanism 

 

1 A car with mass 700 kg accelerates uniformly from rest to a velocity of 

20 m s−1 in a time of 10 s. The frictional resistance to the motion of the 

vehicle is assumed to be constant throughout at 0.5 kN. 

a) Calculate the force accelerating the car. 

b) Calculate the average power developed by the engine. (2 marks) 

2 A satellite launch vehicle travelling at 1000 m s−1 uses a controlled 

explosion to release its payload into orbit. The empty launch vehicle 

has a mass of 7500 kg and the satellite released has mass 250 kg. Both 

continue travelling in the same direction, with the launch vehicle now 

moving at 900 m s−1. 

a) Calculate the initial momentum of the launch vehicle immediately 

before the satellite was released. 

b) Calculate the final velocity of the satellite after release. (2 marks) 

3 A lift cage with mass 500 kg accelerates vertically upwards from rest    

to a velocity of 6 m s−1 in a distance of 12 m. The frictional resistance to 

motion is assumed to be constant throughout at 200 N. 

a) Calculate the work done raising the lift. 

b) Calculate the tension in the lifting cable. 

c) Calculate the power developed by  the winch. (3 marks) 

4 A lorry with mass 3500 kg is parked at the top of a steep hill with a 1–

in–8 gradient when its handbrake fails. Assume that the lorry has a 

constant frictional resistance to motion of 500 N. The lorry rolls 40 m 

down the hill before crashing into a lamp post. 

Use the principle of conservation of energy 

to calculate the velocity of the lorry 

immediately prior to its impact with the 

lamp 

post.

 

(3 marks) 



34 Engineering Principles 

 

 

For each of the problems in this assessment practice, use the following 

stages to guide your progress through the task. 

Plan 
• Which engineering principles need to be applied to this problem and 

what are the key formulae involved? 

• How does the information given in the question dictate or 

otherwise influence my approach? 

Do 
• I have identified all the information I need to answer the question, 

including any formulae required. 

• I have laid out my solution logically and explained each step so that 

my method can be followed easily. 

Review 
• I can identify the parts of my knowledge and understanding that 

require further development. 

• I can identify the type and style of questions that I find most 

challenging and devise strategies, such as additional purposeful 

practice, that will help me to overcome any difficulties. 
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 D Fluid and thermodynamic engineering systems 

 

D1 Fluid systems thermodynamic processes use absolute pressure, which 

takes atmospheric pressure into account. Unit: pascal (Pa). 

There are many situations in which engineers must design 
ways to contain or transport fluids (liquids or gases), such 

pabs = pgauge + 101.325 × 103 Pa 

as oil tankers, dams or pipelines. This topic will develop 

your knowledge of fluid dynamics as applied in a range of 

scenarios, including how water exerts a force on retaining 

walls, up-thrust and its effects on submerged objects, and 

flow in tapering pipes. 
 

 

▸ Dam holding back a body of water 

 

Fluid system parameters 

The following are definitions of and formulae for the main 

parameters used to describe fluid systems. 

Pressure (p) – a measure of force (F) distributed over an 

area (A). Unit: newton per square metre (N m−2) or pascal 

(Pa), where 1 N m−2 = 1 Pa. 

p = 
F

 
A 

Gauge pressure (pgauge) – the pressure in a system relative 

Mass (m) – a measure of the amount of matter contained 

within a body. Unit: kilogram (kg). 

Volume (V) – a measure of the amount of space occupied by 

a body. Unit: cubic metre (m3). 

Density (ρ) – describes the compactness of a material by 

measuring the amount of matter or mass (m) that is 

contained within a unit volume (V). Unit: kilogram per 

cubic metre (kg m−3). 

= m 
V 

Weight (Fg) – the force exerted by a gravitational field (g) 

on a mass (m). Unit: newton (N). 

Fg = mg 

On Earth, the gravitational field strength (g) is usually taken 

as 9.81 N kg−1. 

 

Hydrostatic pressure 

The hydrostatic pressure in an ocean increases with depth 

due to the weight of the water above. Submarines will 

be crushed if they descend too deep, and some deep- 

sea wrecks, such as the Titanic, can only be reached by 

specialist remotely operated vehicles. 

The hydrostatic pressure (p) exerted by a column of fluid 

is dependent on the height (h) of the fluid column, the 

density of the fluid (ρ) and the gravitational field strength 
(g) (see Figure 1.51). 

to the ambient (or atmospheric) pressure. A pressure gauge 

is an instrument that measures the difference between 

the pressure of a contained fluid and its surroundings. If   

a pressure gauge on the surface of the Earth reads zero,  

it does not mean that there is a total vacuum or absence 

of pressure, only that the pressure being measured is the 

same as that of its surroundings (in this case atmospheric 

pressure). Unit: pascal (Pa). 

p = ρgh 

 
h 

 
 

p 5 ρgh 

standard  atmospheric  pressure  (patm)  –  the  pressure 

on the surface of the Earth as a result of the weight of the 

atmosphere above our heads. Unit: pascal (Pa). Standard 

atmospheric pressure is defined as 101.325 kPa. 

Absolute pressure (pabs) – the pressure relative to   a perfect 

vacuum. It is equal to gauge pressure plus 

standard atmospheric pressure. The equations describing 

ρ 
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▸ Figure 1.51 Hydrostatic pressure in a beaker of fluid 

Notice that hydrostatic pressure is independent of 

the cross-sectional area of the fluid column. This 

means that  the pressure felt at 10 cm depth in the 

Atlantic Ocean is the same as the pressure at 10 

cm depth in your bath, which is also the same as 

the pressure at 10 cm depth in a tall glass 

(assuming they are all filled with sea water). 
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submerged surfaces in fluid systems 

Dams are used extensively in civil engineering projects to 

retain or redirect water in lakes or rivers (see Figure 1.52). 

It is vital that engineers build such structures strong 

enough to withstand the forces that are exerted by the 

weight of the water they retain. 

 
 

h 
2 

h 

 
Centroid (x) 

Water 

 
 

h    
2    

 
 

 
Retaining wall 

 

▸ Figure 1.53 The centroid of a rectangle is at the intersection of 
the diagonals 

 

The average pressure on a submerged vertical surface will 

act at its centroid. For a simple rectangle the height of the 
centroid (x) is 

h
, so: 

h pavg    
2 

pavg = ρgx = 
ρgh  

2 

 
 
 
 

Pressure field where p 5 ρgh 

▸ Figure 1.52 A dam retaining a body of water 

The pressure exerted on a submerged rectangular vertical 

surface, such as a dam, is not uniform over its entire 

submerged height (h). (Note that h is always measured 

downwards from the free surface of the fluid.) 

Average pressure on a rectangular vertical surface 

You know from p = ρgh that hydrostatic pressure is 

proportional to submerged height, increasing as h 

increases. Therefore: 

▸ minimum pressure will be at the free surface of the 
fluid, where h = 0 and so pmin = 0 

▸ maximum pressure will exist where h = h and so 
pmax = ρgh. 

This means that the average pressure (pavg) exerted on the 

submerged surface will be: 

Hydrostatic thrust 

If we know the average pressure (pavg), then we can 

calculate the average force or thrust (FT) acting on a 

submerged plane with surface area (A): 

FT = pavg × A 

Therefore, the hydrostatic thrust (FT) exerted by a fluid 

with density (ρ) acting on a submerged plane surface of 

area (A) whose centroid is at a distance (x) from the free 

surface of the fluid is given by: 

FT = ρgAx 

Centre of pressure 

Hydrostatic thrust can be treated as a single-point force 

acting at the centre of pressure of the submerged plane. 

The centre of pressure for a rectangular submerged plane 

surface is determined by considering the centroid of 

the triangular pressure field shown in Figure 1.54. For a 

rectangular plane surface immersed vertically in a fluid, 

the distance (hp) of the centre of pressure from the free 

surface is: 

pavg = 
pmin +  pmax  

= 
2 

0 + ρgh  
= 

2 

ρgh  

2 
hp = 2h 

An alternative way of determining pavg is to consider 

the centroid of the submerged surface. This method is 

applicable to any shape of vertical submerged surface, not 

just rectangular. 

The centroid or geometric centre of a shape is the average 

position of all the points in the shape. It is important 

because it determines the height at which the average 

pressure will act on a submerged plane surface. For a rectangular 

surface, finding the position of the centroid 

is straightforward (see Figure 1.53). For other geometric shapes it 

can be more complex. 
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Centroid 
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▸    Figure 1.54 Centroid of triangular pressure field 

h 
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Worked Example 

A storage tank 2 m wide has a vertical partition across its width. Side 1 of the partition is filled with oil with a density  of 

900 kg m−3 to a depth of 1.8 m, and side 2 is filled with oil with a density of 750 kg m−3 to a depth of 0.9 m. Find the 

resultant hydrostatic thrust on the partition. 
 

solution 

Draw a sketch like the one in Figure 1.55. 
 

1 2 
   

 

F1 

 

 
 

 
h1 

 
F2 

 

ρ1 

 
ρ2 

 
h2 

▸ Figure 1.55 Sketch of the partitioned storage tank 

Identify the parameters given in the question: 

ρ1 = 900 kg m−3, h1 = 1.8 m, A1 = 1.8 × 2 = 3.6 m2, ρ2 = 750 kg m−3, h2 = 0.9 m, A2 = 0.9 × 2 = 1.8 m2 

For a rectangular plane the average pressure will occur at a distance of 
h 

from the free surface: 

x = 
h 2 
2 

Hydrostatic thrust on the partition in side 1: 

F1 = ρ1gA1x1 = 900 × 9.81 × 3.6 × 0.9 = 28 606 N 

Hydrostatic thrust on the partition in side 2: 

F2 = ρ2gA2x2 = 750 × 9.81 × 1.8 × 0.45 = 5960 N 

Let FR be the resultant thrust acting from left to right. Then 

FR = F1 − F2 = 28 606 – 5960 = 22 646 N 

P A U s E P O I N T  Explain the difference between the height at which the average pressure on a 

submerged surface acts and the centre of pressure where the hydrostatic thrust can 

be considered to act. 

Both values are determined by finding centroids. 

Taking the bottom of a dam as the centre of rotation, derive a formula to calculate 

the overturning moment acting on the dam as a consequence of the hydrostatic 

thrust exerted upon it. 

Hint 
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We also know that ρ = 
m

, so 

0 . 108 
= 

ρfluid Vfluid = 1020 × 0 . 081 

 

 

  

0.15 m 

 
▸ Figure 1.58 Block of wood partially submerged in 

seawater 

Identify the parameters given in the question: 

Vbody = 1.8 × 0.3 × 0.2 = 0.108 m3 

 

Vfluid = 1.8 × 0.3 × 0.15 = 0.081 m3 

For a partially submerged body in static 

equilibrium: 

 

 

200 mm thick floats in seawater. The seawater has 

a density of 1020 kg m−3  and 150 mm of the block   

is below the free surface. Calculate the density and 

mass of the wood. 

 

 

0.3 m 
1.8 m 

0.2 m 

Ft 
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Immersed bodies 

Archimedes’ principle 

Archimedes’ principle states that ‘a body totally or partially 

submerged in a fluid displaces a volume of fluid that weighs 

the same as the apparent loss in weight of the body’. 

submerged bodies 

To help visualise Archimedes’  principle,  consider 

the suspended body submerged in a fluid shown in 

Figure 1.56. Given that the suspended body is in static 

equilibrium, there are three balanced forces acting upon it: 

the weight of the body (Fg) is balanced by the tension (Ft) in 

the wire supporting it and the up-thrust (Fup) according to 

Archimedes’ principle. 

 
In this case the balance of forces gives 

Fg = Fup 

and hence 

ρbodyVbody  = ρfluidVfluid 

Remember that Vfluid is the volume of fluid displaced by the 

body and so is equal to only the volume of that part of the 

body which is submerged. 

 
 

 

ρbody 

V 

ρfluid 

 
 
 

Fg Fup 

▸ Figure 1.56 The forces acting on a submerged body in static 
equilibrium 

From the balance of forces we know that 

Ft = Fg − Fup 

where the weight (Fg) is given by 

Fg = ρbodyVbodyg 

and Archimedes’ principle tells us that 
F    = ρ V g 

up fluid fluid 

 

Determination of density using floatation methods 

If a body is floating on the surface of a fluid (as in Figure 

1.57), then there is no need to provide support to maintain 

static equilibrium, and so Ft = 0. 

 
 
 
 
 
 

 

 
F

g 
F

up 

Relative density 

The relative density (d) of a substance is defined as the 

density of the substance compared with the density of 

pure water. It is given by 

▸ Figure 1.57 A partially submerged floating body in static equili brium = 
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= 0.098 m or    
2 4 × 0 . 007 57 
 

 

   

 

 

 

 
  

 

14 
 = 0.007 57 m  

 
 

a) V= A1v1 = 0.017 67 × 6 = 0.106 m3 s−1 

b) m= ρV= 1025 × 0.106 = 108.68 kg s−1 (using 

unrounded values in the calculation) 

 

V 0 . 106 

  
 = 0.017 67 m  

  
1 π × 0. 15  

 

On board a ship, seawater with a density of 

1025 kg m–3 flows with a velocity of 6 m s–1 through 

a section of horizontal pipe with diameter 150 mm. 

The water is discharged over the side  back  into 

the sea at a velocity of 14 m s–1 through a gradually 

tapering nozzle fitted to the pipe. 

Calculate the volumetric flow rate in the pipe. 

Calculate the mass flow rate in the pipe. 

Calculate the final diameter to which the nozzle 

must be tapered. 

 

 

Identify the parameters given in the question 

(referring to Figure 1.59): 

ρ = 1025 kg m–3
, v1 = 6 m s–1

, v2 = 14 m s–1 

 

 

v1 A1 
 

 
A2 v2 

̇ 

 

 
 

 

 

 

Fluid flow in a gradually tapering pipe 
Figure 1.59 shows the flow of an incompressible fluid 

through a gradually tapering pipe. Analysis of the flow 

characteristics is simplified considerably if we assume that 

the density of the fluid, and so its volumetric and mass   

flow rates (defined below), all remain constant  throughout. 

 
 

D1 D2 

  

▸ Figure 1.59 Incompressible flow in a tapering pipe 
 

Volumetric flow rate (V̇) – the volume (V) of fluid that 

passes a given point in time (t). Unit: cubic metre per 

second (m3 s−1). V 

V̇= 
t
 

For flow through a pipe, V̇can be expressed in terms of the 

flow velocity (v) and the cross-sectional area  of  the  pipe 

(A): 

V̇= Av 

Mass flow rate (m ̇) – the mass (m) of fluid that passes a 

given point in time (t). Unit: kilogram per second (kg s−1). 

m = 
m

 
t 

Using the density of the fluid (ρ), the mass flow rate (m ̇) 

and volumetric flow rate (V̇) are related by 

ṁ= ρV̇ 

which can also be stated as 

ṁ= ρAv 

Equations describing the continuity of flow 

In a gradually tapering pipe as in Figure 1.59, the 

volumetric and mass flow rates are the same at points 1 

and 2. This means that 

V̇= A1v1 = A2v2 

and 

ṁ= ρA1v1 = ρA2v2 

 
 
 
 
 
 
 

 
D2 Thermodynamic systems 

The transfer of heat can significantly affect the operational 

characteristics of some engineered components. In this 

section, you will see how the effects can be assessed and 

how to calculate the amount of heat energy required to 

complete certain processes. 

Consider the water displaced by a vessel. 

A rowing boat carries a large rock to the centre of a lake. The rower then pushes the 

rock overboard. It sinks. At this point does the water level in the lake rise, fall or stay 

the same? 

Hint 

 

Steel is much denser that water. Explain how it is possible that a steel ship can float. P A U s E P O I N T  
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Heat transfer parameters in thermodynamic 
systems 

Temperature (T) – a measure of the kinetic energy of  

atomic or molecular vibrations within a body. Generally, 

temperature is measured in degrees Celsius (°C), where 0°C 

is the freezing point and 100°C is the boiling point of water. 

Thermodynamic temperature (T) is used in 

thermodynamic calculations and is measured on the 

absolute, or kelvin (K), temperature scale. Thermodynamic 

temperature has the same unit size as the Celsius scale, but 

the zero point for the kelvin scale is set at absolute zero. 

Absolute zero is a theoretical minimum possible temperature, 

at which the kinetic energy of molecular vibrations within 

a body would be zero. 0°C corresponds to 273K, 20°C 

corresponds to 293K and −20°C corresponds to 253 K. 

Pressure (p) – a measure of force (F) distributed over an 

area (A). Unit: newton per square metre (N m−2) or pascal 

(Pa), where 1 N m−2 = 1 Pa. 

Mass (m) – a measure of the amount of matter contained 

within a body. Unit: kilogram (kg). 

Thermal conductivity (λ) – a material property that 

describes a material’s ability to conduct heat. Unit: watts 

per metre per kelvin (W m−1 K−1). 
 

Heat transfer processes 

Heat transfer within or between bodies can occur by three 

distinct processes: conduction, convection and radiation. 

Conduction 

Conduction in solids and liquids  involves  the transmission 

of heat energy from one atom to another through physical 

contact (see Figure 1.60). As described previously, heat 

energy can be thought of as the kinetic energy of atomic 

vibrations. Atoms with high energy will pass some of this 

energy on to adjacent low-energy atoms, which establishes 

a flow of heat energy through the material. A secondary 

heat transfer process contributes to conduction, where free 

electrons moving through the material transfer heat energy. 

This goes some way towards explaining why good electrical 

conductors tend also to be good thermal conductors. 

 
Conduction is more difficult in gases because the 

molecules or atoms are not in permanent contact. Heat 

energy can only be transferred during collisions between 

high-energy molecules or atoms and those with low heat 

energy. This helps to explain why gases are generally poor 

thermal conductors. 

When conduction through a material (see Figure 1.61) 

is in steady state (with all variables remaining constant), 

the heat transfer rate (Q) can be expressed in terms of the 

surface area (A), temperature gradient (Ta − Tb), thickness 

(x) and thermal conductivity (λ) of the material: 

Q = 
λA(Ta  −  Tb) 

This formula shows that the rate of heat transfer by 

conduction (Q) is proportional to the surface area of the 

material (A). Often, the surface finish of a component 

designed for rapid heat transfer is textured so as to 

maximise its surface area. 

Tb Ta 

 
    Heat 

energy (Q) 

 
 

x 

▸ Figure 1.61 Heat transfer by conduction through a material 

 
Convection 

Heat transfer by convection can occur only in liquids 

or gases where the molecules are free to move (see 

Figure 1.62). Any local heating in one part of such a 

material (caused by conduction or radiation) will cause 

localised expansion and a reduction in density. Fluid with 

lower density than its surroundings tends to rise, carrying 

its heat energy with it. Low-temperature fluid then flows 

in to replace the fluid that has risen and it, in turn, is 

warmed, expands and rises away. A convection current is 

established in this way. 

 
 
 

Heat 
energy 

Cool Hot 

 

 

▸ Figure 1.60 Heat transfer by conduction occurs when heat 
energy is passed from one atom to another through physical 

contact. 

 
 
 
 

Convection 
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Heat energy 

▸ Figure 1.62 Heat transfer by 
convection 
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αL 13 × 10−6 × 0.5982 

 

so T2 = ΔT + T1 = 231.46 + 20 = 251.46°C 

▸ Figure 1.63 A tyre of the 
railway carriage 

 

Draw a sketch of one wheel as in Figure 1.63. 

Identify the parameters given in the question: 

 

L = 598.2 mm = 0.5982 m at 20°C 

 

 

The important thing to realise here is that the size of the hole 

will expand in exactly the same way as if it were a solid 

disk of material. 

 

The wheels on a vintage railway carriage have steel tyres that have to be expansion-fitted to cast iron rims. The 

coefficient of linear thermal expansion for the steel used for the tyres is 13 × 10−6 K−1. If the tyre has an internal 

diameter of 598.2 mm at 20°C and the diameter of the wheel rim is 600 mm, determine the minimum temperature to 

which the tyre must be heated for it to be fitted. 

 

 
 

 
 

Forced convection occurs when a fluid is forced to flow 

over a heat source in order to distribute heat energy to   

its surroundings. This is the principle employed in a hair 

dryer – cool ambient air is blown over an electric heating 

element and emerges at a much higher temperature. 

 
Radiation 

Radiation refers to the transfer of heat energy without 

physical contact. Instead, energy is transmitted in the form 

of electromagnetic waves (similar to those carrying light 

or radio signals), which are emitted as a result of energy 

changes in the orbits of electrons contained within the 

transmitting material. 

This mechanism explains why on a hot sunny day we can 

feel the warmth of the sun, despite it being millions of 

miles away, through the vacuum of space. 

 

Linear expansivity 

A change in the temperature of a material is associated with 

a change in its size. This change in size acts in all directions. 

The amount by which the size changes given the same 

change in temperature differs from material to material and 

is defined by the material’s coefficient of linear expansion. 
 

 

The change in length (ΔL) of a component with coefficient 

of linear expansion (α)  and initial length (L)  when subject  

to a temperature change (ΔT) is given by: 

ΔL = αLΔT 

 

 

 

Coefficient of linear expansion (α) –  a  material 

property that describes the amount by which the 

material expands upon heating with each degree rise in 

temperature. Unit: inverse kelvin (K−1). 

Use diagrams to illustrate each process. 

In terms of heat transfer processes, explain how a vacuum flask keeps hot things hot 

and cold things cold. 

Hint 

 

Explain the three principal mechanisms of heat transfer. P A U s E P O I N T  
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V – vapour 
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Heat transfer and phase changes 

If a solid material is subjected to a  continuous  input  of 

heat energy, then its temperature will begin to rise until it 

reaches the melting point of the material (see Figure 1.64). 

The melting point of a solid is the temperature at which a 

phase change from solid to liquid will begin. During the 

phase change, continued heating will lead to no further 

increase in temperature until all of the solid has undergone 

the change into a liquid. 

Once the phase change to a liquid is complete, continued 

heating will once again produce a rise in temperature, but 

at a different rate, until the boiling point of the liquid is 

reached. The boiling point of a liquid is the temperature at 

which a phase change from liquid to gas will begin. Again, 

during the phase change, continued heating will lead to    

no further increase in temperature until all the liquid has 

changed into a gas. 

Once the phase change to a gas is complete, continued 

heating will once again produce a rise in temperature at 

yet another rate. 

heat required to produce a given rise in temperature varies 

from material to material and even between the solid, 

liquid and gas phases of the same material. 

specific heat capacity (c) is a material property that 

describes the amount of heat energy required to raise the 

temperature of 1 kg of a material by one kelvin. Unit: joules 

per kilogram per kelvin (J kg−1 K−1). 

sensible heat transfer (Q) is the product of the mass of 

material (m), the specific heat capacity of the material (c) 

and the change in temperature (ΔT). Unit: joule (J). 

Q = mcΔT 

 
Latent heat 

Energy that does not cause a temperature rise but instead  

is absorbed by the material as it undergoes a phase change 

is called latent heat. For a given material, the latent 

heat of fusion (phase change from solid to liquid) will  

be different from the latent heat of vaporisation (phase 

change from liquid to gas). 

Latent heat of fusion (Lf) is a material property that 

describes the amount of heat energy required for 1 kg of 

the material to undergo a change of phase from solid to 

liquid. 

Latent heat of vaporisation (Lv)  is  a  material  property 

that describes the amount of heat energy required for 1 kg 

of the material to undergo a change of phase from liquid   

to gas. 

Latent heat transfer (Q) is the product of the mass of 

material (m) and its latent heat (L). Unit: joule (J). 

Q = mL 
 
 
 

Time (t) 

▸ Figure 1.64 Change in temperature observed when heat 
energy is supplied to a material at a constant rate 

 

sensible heat 

Heat energy that causes a change in the temperature of a 

material is called sensible heat. The amount of sensible 

Consider what will happen to the bridge structure in warm weather. 

Research the operation of a bimetallic strip and explain its use. 

Hint 

 

Why are gaps left between road sections in bridge constructions? P A U s E P O I N T  

 

Phase – the physically distinctive form of a substance: 

solid, liquid or vapour. 

sensible heat – heat energy that causes a change in 

the temperature of a substance. 

Latent heat – heat energy causing a change of state of  

a substance without a change in temperature. 
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Worked Example 
 

  
 

 

 

 

 

 

Thermal efficiency of heat engines and heat pumps 
Heat engines 

Heat engines include internal combustion engines, steam engines and any other machine or process that changes heat 

energy into mechanical work. 

In thermodynamic terms, a heat engine takes heat energy supplied at a high temperature and converts some of this energy 

into useful mechanical work while rejecting the remainder at some lower temperature: 

heat received at high temperature = work done + heat rejected to some lower temperature 

The thermal efficiency of a heat engine is the ratio of useful work done to the equivalent heat energy contained in the 

amount of fuel used: 

thermal efficiency = 
mechanical power output (W) 

 
 

equivalent heat energy of fuel (J kg−1) × fuel consumption rate (kg s−1) 

100°C 
d 

Calculate the energy required to convert 1 kg of ice at −5°C into superheated dry steam at 140°C. 

For water, the latent heat of fusion is 334 kJ kg−1, the latent heat of vaporisation is 2260 kJ kg−1 and the specific heat 

capacity is 4.2 kJ kg−1 K−1. 

The specific heat capacity of dry steam is 1.8 kJ kg−1 K−1 and the specific heat capacity of ice is 2 kJ kg−1 K−1. 

solution 

Draw a sketch, like the graph in Figure 1.65, to show how the temperature of water changes with increasing heat energy. 

 
140°C 

 

e 

a 

-5°C 
Time (t) 

▸ Figure 1.65 Change in temperature when heat energy is supplied to water 

Identify the parameters given in the question: 

m = 1 kg, cice = 2 kJ kg−1 K−1, cwater = 4.2 kJ kg−1 K−1, csteam = 1.8 kJ kg−1 K−1, Lf = 334 kJ kg−1, Lv = 2260 kJ kg−1 

Considering each of the parts marked a to e on Figure 1.65: 

Qa = mciceΔT = 1 × 2 × 5 = 10 kJ 

Qb = mLf = 1 × 334 = 334 kJ 

Qc = mcwaterΔT = 1 × 4.2 × 100 = 420 kJ 

Qd = mLv = 1 × 2260 = 2260 kJ 

Qe = mcsteamΔT = 1 × 1.8 × 40 = 72 kJ 

So the total energy required is 

Qtotal = 10 + 334 + 420 + 2260 + 72 = 3096 kJ 

b 
0°C 

c 
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2000 
c) refrigeration performance ratio =

 3000 
= 1.5. 

2000 
b) heat pump performance ratio =

 5000 
= 2.5 

 

a) heat extracted from a lower temperature 

(the ground) per second = 5000 − 2000 = 3000 J 

= 18 × 106 
J s−1 

60 × 60 

= 5000 J s−1 

 

2 kW of electricity and can deliver 18 MJ of heat 

energy per hour to a house central heating 

system. 

Calculate the heat extracted from the ground 

per second. 

Determine the performance ratio of the heat 

pump when warming the house. 

Determine the performance ratio of the heat 

pump as a refrigerator cooling the ground. 

 
 

Identify the parameters given in the question: 

external energy supplied = 2 kW = 2000 W 

= 2000 J s−1 

heat delivered at higher temperature = 18 MJ h−1 
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Heat pumps 

Heat pumps include systems such as refrigerators, air 

conditioning equipment and ground or air source heat 

pump central heating systems. 

In thermodynamic terms, a heat pump performs in the 

opposite way to a heat engine because it takes in external 

energy to do work, extracts heat from a low temperature 

and delivers heat at a higher temperature: 

external energy supplied 

+ heat extracted from a lower temperature 

= heat delivered at a higher temperature 

In a heat pump used for refrigeration, the heat extracted 

from the low-temperature interior of a  refrigerator  is 

the useful output of the system. The performance of a 

refrigerator is not given in terms of an ‘efficiency’ but as a 

performance ratio (which can be greater than 1): 

refrigeration performance ratio 

=   heat extracted  
external energy supplied 

In a heat pump that is used for heating, the heat delivered 

at a higher temperature is the useful output of the system. 

The performance of a heat pump is also expressed as a 

performance ratio: 

heat pump performance ratio 

=   heat delivered  
external energy supplied 

 
 
 
 
 
 
 
 
 

Enthalpy and the first law of 
thermodynamics 

Enthalpy (H) can be used to describe the total energy 

contained within a closed thermodynamic system. It 

includes any gravitational potential or kinetic energy. 

The idea of enthalpy is reflected in the first law of 

thermodynamics, which states that ‘the net energy supplied 

by heat to a body is equal to the increase in its internal energy 

and the energy output due to work done by the body’. 

In other words, heat energy added into the system will 

either increase the internal energy (U) or be accounted for 

in the work done in expansion quantified by the product   

of pressure (p) and volume (V): 

H = U + pV 

 

= 0.375 

This means that only 37.5% of the potential heat 

energy in the fuel was converted into useful work. 

6.8 × 103 

41.9 × 106 × 4.33 × 10−4 
 

An engine under test developed an indicated power 

of 6.8 kW. Over the 30-minute test the engine used 

780 g of fuel with an equivalent heat energy of 

41.9 MJ kg−1. 

Calculate the thermal efficiency of the engine. 

 

Identify the parameters given in the question: 

mechanical power = 6.8 kW = 6.8 × 103 W 

equivalent heat energy of fuel = 41.9 MJ kg−1 

= 41.9 × 106 J kg−1 

 
rate of fuel consumption = 

30 × 60 s
 

= 4.33 × 10−4 kg s−1 
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= 245 kPa 

The pressure that should be set in the tyres when 

they are in the warmers is 245 kPa (absolute) or 

144 kPa (gauge). 

= 245 112 Pa   
  

373 

 

p1 T2 

 

p1 
= 

p2 

T1 T2 

Make p2 the subject of the equation: p2 = 

Substitute in the known quantities: 

 

T1 T2 

The tyre itself contains the gas in a constant 

volume, so V1 = V2. Eliminating these from the 

general gas equation gives 

Formula 1 tyres are designed to perform optimally 

at the full race temperature of 100°C when the 

gauge pressure in the tyre is 158 kPa. Tyre warmers 

are used before the race to pre-heat the tyres 

to 80°C. What pressure needs to be in the tyres 

when they are in the warmers to ensure optimal 

performance during the race? 

 

During the race: 

 

p1 = 158 kPa = 158 × 103 Pa, which corresponds 

to an absolute pressure of 259 × 103 Pa. 

In the tyre warmers: 

 

p2 = ? 

These quantities are related by the general gas 

equation: 

 

 
 

 
 

Entropy and the second law of 
thermodynamics 

Entropy (S) can be thought of as a measure of the 

dispersal of energy present in a thermodynamic system. 

The second law of thermodynamics can be expressed in 

many ways, but it was first put forward in the form ‘it is 

impossible for a self-acting machine unaided by an external 

agency to convey heat from one body to another at a 

higher temperature’. You have seen this when you looked at 

heat pumps. Heat flow would be spontaneous from a high 

temperature (with low entropy) to a low temperature (with 

higher entropy). However, in a heat pump, work must be 

done to reverse this natural process and move heat from a 

low temperature to a high temperature. 

The second law can be expressed in terms of entropy 

as ‘the entropy of any thermodynamic system and its 

surroundings will always tend to increase’. 

This is the fundamental reason why heat flows from hot  

to cold temperatures and fluids flow from an area of high 

pressure to an area of low pressure. 

 

The gas laws 

Boyle’s law states that provided the temperature (T) of    

a perfect gas remains constant, the volume (V) of a given 

mass of the gas is inversely proportional to the pressure (p) 

of the gas. This can be stated as 

pV = constant 

Charles’s law states that provided the pressure (p) of a 

given mass of a perfect gas remains constant, the volume 

(V) of the gas will be directly proportional to the absolute 

temperature (T) of the gas. This can be stated as 
V 

= constant 
T 

The general gas equation comes from combining Boyle’s 

and Charles’s laws and takes the form 
pV 

T 
= constant 
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   Assessment  practice 1.4  

1 A dam holding back water in a reservoir consists of a vertical 

retaining wall 10 m wide and 6 m high. The water has a density   

of 1000 kg m−3 and the water level is 1 m from the top of the wall. 

When designing and building dams it is essential that engineers 

understand the forces that will be acting on the dam so it can be 

made to withstand them. 

a) Calculate the resultant force exerted by the water on the dam. 

b) Calculate the overturning moment acting around the base of 

the dam that the structure must be able to withstand. 

(8 marks) 

2 20 ml of air at atmospheric pressure of 101 kPa and temperature 

20°C is contained in a fire piston with a piece of char cloth. The 

piston is struck and the air is rapidly compressed to 1 ml, causing 

a temperature increase to 420°C, which is sufficient to ignite the 

char cloth. Calculate the final pressure in the cylinder. 

(2 marks) 

3 An aluminium bar with diameter 10 mm measures 1.2 m in length 

at 120°C. The bar is rigidly clamped at both ends before being 

allowed to cool to 20°C. 

The aluminium has a linear coefficient of expansion of 

22.2 × 10−6 °C−1, a tensile strength of 110 MPa and a Young’s 

modulus of 69 GPa. 

a) Calculate the force induced in the aluminium bar during 

cooling. 

b) Explain whether or not the bar will break during cooling. 

(5 marks) 

4 A solid bronze cannon with mass 560 kg is being recovered from  

a shipwreck and is suspended by a lifting cable. The density 

of bronze is 8900 kg m−3 and the density of the seawater is 

1025 kg m−3. 

a) Calculate the tension in the lifting cable when it is suspending 

the fully submerged cannon. 

b) Calculate the tension in the cable as the cannon leaves the 

water when it is held with a third of its volume still submerged. 

(5 marks) 

5 In a water treatment plant, fresh water with density 1000 kg m−3 

flows at 3 m s−1 through a horizontal section of pipe 60 mm in 

diameter. The section of pipe gradually tapers to a diameter of 

90 mm. 

a) Calculate the volumetric flow rate in the pipe. 

b) Calculate the mass flow rate in the pipe. 

c) Calculate the flow velocity in the section of pipe where the 

diameter is 90 mm. 

For each of the problems in this assessment 

practice, use the following stages to guide 

your progress through the task. 

Plan 
• How will I approach the task? Which 

principles and formulae are applicable? 

• Do I need clarification around anything? 

Have I read and fully understood the 

question? 

Do 
• I understand my thought process and can 

explain why I have decided to approach 

the task in a particular way. 

• I can identify where I have gone wrong 

and adjust my thinking to get myself back 

on course. 

Review 
• I can identify which elements I found 

most difficult and where I need to review 

my understanding of a topic. 

• I can explain the importance of this 

area of learning in a wider engineering 

context. 

(6 marks) 
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 E Static and direct current electricity and circuits 

 

E1 Static and direct current 

electricity 

static electricity 

Static electricity is the build-up of electrical charge on 

an object. The word ‘static’ implies that there is no flow of 

electricity once the object is charged – that is, until 

the charge finds a suitable pathway through which to 

move or discharge. When you observe a lightning bolt, 

you have witnessed the discharge of static electricity  

from a storm cloud down to the ground or to another 

cloud. Static electricity is not always so spectacular, 

though – it is also generated when you rub a balloon on 

your hair or clothing, allowing you to stick the balloon to  

a ceiling. 

Electrostatic forces are responsible for holding together  

the atoms and molecules that form the basis of everything 

that exists, including you. 

Matter is made up of atoms. According to the Bohr atomic 

model, the core or nucleus of an atom contains neutrons  

and positively charged protons tightly bound together. The 

positive charge on the protons holds negatively charged 

electrons in orbit around the nucleus. Usually the positive 

charge possessed by the protons is balanced by the negative 

charge of the electrons held in orbit. However, electrons are 

only weakly held in orbit and have a tendency to move or 

migrate to adjacent atoms. An object becomes positively 

charged when electrons move away from it and too few 

 

 
▸ Figure 1.66 Radial electric field lines from an isolated point 

charge 
 

Electric field strength (E) – the strength at any point 

within an electric field, defined by the size of the force 

(F) that is exerted per unit of charge (q). Unit: newton per 

coulomb (N C-1). 

E = 
F

 

Electric flux (ψ) – measures the amount of flow of an electric 

field (as represented by electric field lines). The unit of electric 

flux is defined to be the amount of electric field emanating 

from a source with a positive charge of 1C. Unit: coulomb (C), 

where a charge of 1C gives rise to an electric flux of 1 C. 

Electric flux density (D) – the amount of electric flux (ψ) 

passing through an area (A) that is perpendicular to the 

direction of the flux (as represented by the number of 

electric field lines per unit area). Unit: coulombs per square 

metre (C m−2). 
D = 

ψ 
= 

q
 

 
 

remain to balance the positively charged protons.  An object A A 
becomes negatively charged when it has an excess of 
electrons orbiting it, more than are required to balance the 

positively charged protons. 

Electrical charge (q) is measured in coulombs (C). A single 

electron has an electrostatic charge of 1.602 × 10−19 C. 
 

Electric fields 

Wherever a charged particle or object is present, it 

generates an electric field acting in a particular direction. 

This can be represented using field lines (see Figure 1.66). 

Wherever an electric field exists, any object with an 

electrical charge will experience a force acting upon it. 

By convention, the arrows on the field lines indicate the 

direction of the force that would act on a positive test 

charge. The following are the important parameters used 

to describe electric fields. 

Coulomb’s law 

Where two objects are electrostatically charged, the 

electric fields they generate cause an electrostatic force to 

exist between them. The direction in which this force acts 

depends on the types of charges involved: like charges repel 

each other, while opposite charges attract. The magnitude 

of the force depends on the distance between the objects. 

Coulomb’s law is used to determine the magnitude of 

the electrostatic force that exists between two charged 

particles. It is expressed by the equation 

F = 
q1 q2 

4π ε0 r 2 

where F is the force between two particles carrying 

electrostatic charges q1 and q2 that are held in free space 

with permittivity ε0 at a distance r apart. 

+ 
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From the formula you can see that force and distance are 

related by an inverse square law, which means that the 

force will rapidly increase as the particles move closer 

together and rapidly decrease as they move apart. 

 
Permittivity 

Permittivity is a measure of the resistance of a material 

to the formation of an electric field. The force exerted 

between charged particles depends on the medium in 

which they are contained. The permittivity of free space 

(see below) is used in the Coulomb’s law equation 

because this approximates to having the particles 

contained in air. 

Absolute permittivity (ε)  measures the ability of a 

material to resist the formation of an electric field within 

itself. It can also be thought of as a measure of how much 

electric flux is produced in a material by an electric field. 

Unit: farads per metre (F m−1). 

Permittivity of free space  (ε0)  is  the  permittivity  of 

a vacuum. For an electric field in a vacuum there is    

no medium that could affect the formation of electric 

flux. The permittivity of free space is a constant, 

ε0 = 8.85 × 10−12 F m−1, and is the ratio of electric flux 

density (D) to electric field strength (E). 

ε0 = 
D

 

Relative permittivity (εr) is  used  to  define  the 

permittivity of other media in comparison with that of a 

vacuum. εr is the ratio of a material’s absolute permittivity 

(ε) to the permittivity of free space (ε0). 

εr =
 ε 

Uniform electric fields 

Coulomb’s law deals with the interaction of two point 

charges that have radial, and so diverging, field lines. In a 

uniform electric field, such as that produced between two 

parallel charged plates (see Figure 1.67), the field does not 

vary from place to place and the field lines are parallel and 

equally spaced. 

 

Capacitance 

In a uniform electric field between two electrically charged 

plates, as in Figure 1.67,  the field strength (E) can be  

defined by the potential difference (V) or voltage between 

the plates and the distance (d) between them: 

E = 
V

 
d 

 

▸ Figure 1.67 A uniform electric field between two plates 
forming a parallel plate capacitor 

 

Capacitance (C) is a property of a pair of parallel charged 

plates. It defines the quantity of electrical charge (q) stored 

on the plates for each volt of potential difference (V) 

between them. Unit: farad (F). 
q 

C = 
V

 

The farad is defined as the capacitance when 1 V of 

potential difference corresponds to 1 C of electrical charge. 

It is a very large unit, so, in practice, capacitance is usually 

expressed in µF (10−6 F), nF (10−9 F) or pF (10−12 F). 

Parallel plate capacitor 

For a parallel plate capacitor like the one in Figure 1.67, 

the capacitance (C) is proportional to the area of the plates 

(A) and the permittivity (ε) of the material occupying the 

space between the plates (known as the dielectric) and  

is inversely proportional to the distance between the 

plates (d) (which also corresponds to the thickness of the 

dielectric): 

C = εA 

d 

 
 
 

 

Consider absolute permittivity, relative permittivity and the permittivity of free 

 

Explain permittivity and its use in defining the relationship between electric field 

strength and electric flux density. 

Hint 

 
 

How does the permittivity of a dielectric material affect the capacitance of a parallel 

flat plate capacitor? 
P A U s E P O I N T  

  

d  
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Current electricity 

Current electricity deals with the flow of electrons around 

circuits in order to do work or process information. 

Conductors and insulators 

For an electric current to flow, a material must allow the 

free flow of loosely bound electrons between its atoms. 

Such materials are called electrical conductors. Materials 

called insulators have electrons that are more tightly 

bound to the atomic nucleus and so less free to move. 

Electrical parameters 

Electromotive force (e.m.f.) drives the movement of 

electrical charge in a closed circuit and causes current to 

flow from a point of high electrical potential energy to a 

point with lower electrical potential energy. 

Potential difference (p.d.) is the difference in electrical 

energy that exists between two points in a circuit. It is 

usually referred to as voltage and is measured in volts (V). 

Voltage (V) is the difference in electrical potential, or the 

potential difference, between two points in a circuit. Unit: 

volt (V). 

Electrical current (I) is the rate of flow of electrical charge 

(q) in time (t). Unit: ampere (A), often abbreviated as ‘amp’. 
q 

I = 
t
 

Current cannot flow in an open circuit because the electrons 

are unable to circulate. Once a circuit is completed, a 

conducting pathway has been provided and, by convention, 

current is said to flow from points with high electrical 
 

▸ Figure 1.68 Diagram illustrating measurement of circuit 
potential difference and conventional current flow 

 
potential towards points of low potential (that is, from a 

high voltage to a low voltage). This is shown in the circuit 

diagram of Figure 1.68. 

Resistance (R) describes the degree to which a circuit 

or component resists or opposes the free flow of an 

electric current. Unit: ohm (Ω), where 1 Ω is defined as the 

resistance required so that a voltage of 1 V will result in a 

current flow of 1 A. 

The reciprocal of resistance is conductance (G). Unit: 

siemen (S). 

Resistivity (ρ) is a material property that describes the 

degree to which the material resists or opposes the free 

flow of electrons. Unit: ohm metre (Ω m). 

Resistance and resistivity should not be confused. The 

resistance of a given sample of material is dependent on 

the size and shape of the sample. Resistivity is a property 

of the material itself and so is the same for samples of that 

material of any amount, size or shape. A helpful way to 

view the relationship between resistivity and resistance is 

to make a comparison with how density relates to mass. 

▸ The resistance (R) of a wire with constant cross-sectional 

area (A) and length (l) made from a material with 
resistivity (ρ) is given by: 

R = 
ρl 

A 

The reciprocal of resistivity is conductivity (σ). Unit: 

siemens per metre (S m−1). 

Resistivity (and conductivity) of a material varies with 

temperature. In general, an increase in temperature will 

cause an increase in the resistivity of most conductors and 

a decrease in the resistivity of most insulators. 

The temperature coefficient of resistance (α)  for  a 

material is defined as the increase in the resistance of a 1 Ω 

resistor made from that material when its temperature is 

increased by 1°C. 

▸ The change in resistance (ΔR) in a component with 

standard resistance (R0) at 0°C and temperature 

coefficient of resistance (α) caused by a change in 

temperature (ΔT) is given by 

ΔR = αΔTR0 

 

 

Consider the resistance and resistivity of a length of copper wire and how these two 

characteristics are measured. 

Explain the effects that temperature has on resistivity. 

Hint 

 
 

Explain the difference between resistance and resistivity. P A U s E P O I N T  

Conventional current 
flow Switch 

 

 Battery 
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Resistors 

Resistors are components used to limit the flow of current 

through a circuit. They are available in a wide range of 

values, from a fraction of an ohm to many mega ohms 

(106 Ω). There are several types of resistors, including wire 

wound, metal film and carbon resistors. The choice of 

which resistor to use in a circuit depends on usage and   

the power handling requirements – the latter might range 

from several watts for a wire wound resistor to a few 

milliwatts (mW) for a tiny surface-mount device used in a 

mobile phone. 

▸ Fixed resistors are components designed to have 
a single specific value and are used extensively in 
electronic circuits. 

▸ Variable resistors are resistors designed so that their 
resistance can be changed (such as a rotary volume 
control on an amplifier). 

The circuit symbols for a fixed resistor and a variable 

resistor are shown in Figure 1.69. 

 
 
 
 

Light dependent 

 
The circuit symbols for some capacitors are shown in 

Figure 1.70. 

     

Capacitor Polarised capacitor Variable capacitor 

▸ Figure 1.70 Capacitor circuit symbols 

 

E2 Direct current circuit theory 
The following are some key parameters used when 

working with capacitors. 

▸ Working voltage – the voltage that can safely be 
applied to a capacitor without the dielectric breaking 
down (failing). 

▸  Charge stored in a capacitor (q) – given by q = CV  for 

a capacitor with capacitance (C) connected to a 
voltage (V). 

▸ Energy stored in a capacitor (W) – given by 
W = 1CV2 for a capacitor of capacitance (C) with an 

applied voltage (V). 

Charging a capacitor 

Figure 1.71 shows a simple circuit where a direct current 

(d.c.) voltage is able to charge a capacitor (C) through a 

series resistor (R). When the switch is closed, current will 

Fixed Variable Thermistor 

▸ Figure 1.69 Resistor circuit symbols 

 

Capacitors 

resistor (LDR) flow until the capacitor is fully charged and reaches its 

steady state. Up to the point when current ceases to flow, 

the variations in circuit current and voltage across the 

capacitor and resistor are known as RC transients. 

Capacitors are components designed to have a specific 

capacitance and so be able to store electrical charge. 

Capacitors are used in a variety of forms in electronic 

circuits and are made from a number of different dielectric 

materials. Table 1.10 lists different types of capacitors  

along with their capacitance range, working voltage and 

typical uses. 

▸ Table 1.10 Types of capacitors 

 
 

V C 

 

 
Switch 

▸ Figure 1.71 A capacitor-charging circuit, with a capacitor and 
a resistor connected in series 

 

Type Capacitance range Typical working voltage Usage 

Electrolytic 1 µF to 1 F 3 V to 600 V Large capacitors; power supplies and smoothing 

Tantalum 0.001 µF to 1000 µF 6 V to 100 V Small capacitors; where space is restricted 

Mica 1 pF to 0.1 µF 100 V to 600 V Very stable; high-frequency applications 

Ceramic 10 pF to 1 µF 50 V to 1000 V Popular and inexpensive; general usage 

Mylar 0.001 µF to 10 µF 50 V to 600 V Good performance; general usage 

Paper 500 pF to 50 µF 100 V Rarely used now 

+ 
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Polystyrene 10 pF to 10 µF 100 V to 600 V High quality and accuracy; signal filters 

Oil 0.1 µF to 20 µF 200 V to 10 kV Large, high-voltage filters 
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If the voltage across the capacitor (VC) is plotted against 

time (t), as in Figure 1.72, the graph shows that the growth 

in voltage is exponential, characterised by the curve rising 

steeply before flattening out as it approaches its maximum 

value. 

 

Discharging a capacitor 

Once fully charged, if the power supply in the capacitor- 

charging circuit is replaced by a short circuit, then current 

will flow out of the capacitor as it discharges. If the voltage 

(Vc) across the capacitor is plotted against time (t), the 

graph will show that the reduction or decay in voltage is 

exponential. Exponential decay is characterised by a curve 

falling steeply before flattening out as it approaches its 

minimum value (often zero), as shown in Figure 1.73. 

 
 
 
 
 
 
 

0 Time (t) 

▸ Figure 1.72 Voltage across a charging capacitor 

At the moment when a capacitor starts to charge, the rate 

of growth of the voltage is high. If the voltage growth were 

maintained at this initial rate, then the time it would take 

for the voltage to reach its maximum value is known as the 

time constant. 

In fact, more generally, the time constant for an 

exponential transient can be defined as the time taken for 

a transient to reach its final value from the time when its 

rate of change is maintained. 

In a series-connected capacitor and resistor circuit, the 

value of the time constant (τ) is equal to the product of the 

capacitance (C) and the resistance (R): 

τ = RC 

When a capacitor with capacitance (C) is charged through   

a resistance (R) towards a final potential (V0), the equation 

giving the voltage (VC) across the capacitor at any time (t) is 

the capacitor charge equation: 

 
 
 
 

0 Time (t) 

▸ Figure 1.73 Voltage across a discharging capacitor 

When a capacitor with capacitance (C) is discharged 

through a resistance (R) from an initial potential (V0), the 

equation giving the voltage (VC) across the capacitor at any 

time (t) is the capacitor discharge equation: 

VC = V 0 e−t/RC 

 

 

VC = V0(1 − e−t/RC) 
Note that when a capacitor is disconnected from a power 

source, it might retain its charge for a considerable length 

of time. It is good practice, therefore, to connect a high- 

value resistor in the circuit across the capacitor terminals. 

This ensures that the capacitor will be automatically 

discharged once the supply is switched off. 

 

 

 

See the section on ‘Exponential growth and decay’ 

in A1 Algebraic methods for worked examples of 

problems. 

What are the two parameters used to calculate the time constant? 

Draw a sketch of an exponential function and explain the relationship between the 

tangent to the curve at any point and the time constant. 

Hint 

 

Explain the meaning of the time constant in the exponential equations for the charge 

and discharge of capacitors. 
P A U s E P O I N T  
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Ohm’s law 
 

Semiconductor diode 

The relationship between voltage (V) and current (I) at Anode Cathode 

constant temperature obeys Ohm’s law: 
V 

= a constant 
I 

This constant is called the resistance (R), and the 

(+) (-) 

 

Zener diode 

relationship can be expressed as: Anode Cathode 

V = IR 

Using Ohm’s law, electrical power (P) can be expressed in 

terms of voltage (V), current (I) and resistance (R): 

(+) (-) 

 

Light-emitting diode 

P = IV = I2R = 
V2

 
 

Anode Cathode 

R 

Its unit is the watt (W). 

The power efficiency (E) of a system is the ratio between 

the power output (Pout) and the power input (Pin): 

E = 
Pout 

Pin 

Ohm’s law can be used to analyse a simple circuit, but in 

more complex situations involving networks of resistors, 

Kirchhoff’s laws are more useful. 

▸ Kirchhoff’s voltage law – in any closed loop network,  
the total p.d. across the loop is equal to the sum of the 

p.d.s around the loop. For example, if three resistors are 

connected in series, with voltage drops (V1, V2 and V3) 

across them, then the total supply voltage (V) is given by 

V = V1 + V2 + V3 

For n resistors connected in series, using V = IR for each 

resistor we get: 

V1 + V2 + V3 + … + Vn = IR1 + IR2 + IR3 + … + IRn 

which can also be expressed as: 

Σp.d. = ΣIR 

▸ Kirchhoff’s current law – at any junction of an electric 
circuit, the total current flowing towards the junction 

is equal to the total current flowing away from the 

junction. For example, if three resistors are connected to 

a common point, with currents (I1, I2 and I3) flowing in 

towards the junction and current (I) flowing away from 

the junction, then: 

I = I1 + I2 + I3 

 
Diodes 

A diode is a very common electronic component made of 

a semiconductor material. It allows current to flow in only 

one direction. The circuit symbols for three types of diodes are 

shown in Figure 1.74. The direction of the arrow indicates the 

direction in which current can flow through the diode. 
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(+) (-) 

▸ Figure 1.74 Diode symbols 

When a voltage is applied to a diode and a current flows 

in the direction of the arrow, the diode is said to be 

forward biased. With a material such as silicon, a 

forward bias 

of approximately 0.7 V is required for a diode to 

begin to allow current to flow. 

Generally, a reverse bias of any voltage will result in 

no current flowing through the diode, with the 

exception of the Zener diode (see voltage 

regulation). 

 
Forward bias applications 

▸  Rectification – one important application of 

diodes   is in the rectification of an alternating 
current (a.c.) electricity supply into a direct 

current (d.c.) output. Electronic devices tend to 

require relatively low d.c. 

voltages to operate. As the domestic electricity 

supply in the UK is 230 V a.c., a step-down 

transformer is 

used first to reduce the voltage to the required 

level, usually between 3 V and 15 V depending on 

the application. The output of the transformer is 

still a.c.,  so a rectifier circuit must be used to 

convert it to d.c. Figure 1.75 shows examples of 

simple rectifier circuits. A capacitor is then 

connected across the output to smooth the 

varying voltage to approximate a d.c. voltage. 

▸ Component protection – diodes are also  

commonly used to protect electronic devices such 

as integrated circuits (ICs) or transistors from 

transient voltage spikes induced in relay coils 
when they are switched off. 

The current flowing through a relay coil generates 

a magnetic field that quickly collapses when the 

current is turned off. The collapsing field induces a 

back e.m.f. in the coil, which if allowed to build 

might cause damage  to the electronic 

components. A  diode  connected across the coil 

conducts the current away from the circuit 

components (see Figure 1.76). 
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▸ Figure 1.75 Simple rectifier circuits 

 

V 

 
 
 

M 

 
 
 
 
 
 
 

 

▸ Figure 1.76 Use of a protection diode 

 

The generation of a back e.m.f. by a collapsing 

magnetic field is an example of self-inductance, 

which is dealt with in more detail in the 

section on ‘Self-inductance in a coil’ under 
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Reverse bias applications 

▸ Voltage  regulation  –  a  Zener  diode  

is  constructed such that when a 

reverse bias voltage reaches a 

defined level, the diode begins to 

allow the flow of current. The point 

at which the diode starts to conduct 

in reverse bias is called the 

breakdown voltage. This can be set 

at anywhere from 2.7 V to 150 V. 

The characteristics of Zener diodes 

allow them to be used in voltage 

regulator circuits, which are able to 

maintain a constant voltage output. 

A simple voltage regulator circuit 

using a   resistor and a Zener diode 

is shown in Figure 1.77. 
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4.7 × 103  
I = 

V 
=

  11.3 
= 0.0024 A or 2.4 mA 

 

 

 

The voltage drop across a forward bias silicon diode 

is 0.7 V. Applying Kirchhoff’s voltage law, you can 

determine the voltage drop across resistor R1: 

 

V1 = 12 – 0.7 = 11.3 V 

You can now determine the current in R1, which is 

the current flowing in the whole series circuit, by 

using Ohm’s law: 

 

 

a silicon diode and a resistor are connected in 

series. Given that the supply voltage is 12 V d.c. and 

R1 = 4.7 kΩ, find the current flowing in the circuit. 
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Supply 
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Resistors in series and parallel 

Resistors in series 

Figure 1.79 shows three resistors connected in series. In 

this configuration it is important to remember that the 

same current flows throughout the circuit, and so the 

current flowing through each resistor will be the same. 

R
1 

R
2 

R
3

 

▸ Figure 1.77 A simple voltage regulator circuit using a Zener 
diode 

 
series resistors and diodes 

Where a forward bias diode is connected in series with    a 

resistor, it is important to remember that there will be a 

voltage drop across the diode. For silicon diodes this is 

typically 0.7 V. 

 

 

▸ Figure 1.79 Resistors connected in series 

 
Resistors in parallel 

Figure 1.80 shows three resistors connected in parallel. 

In this configuration, it is important to note that the 

voltage across each resistor will be the same. 
 

R
3

 

3 

 
 
 
 
 
 
 
 
 
 
 
 
 

I 
 
 
 
 

▸ Figure 1.80 Resistors connected in parallel 

 

 
E3 Direct current networks 

It is common for direct current (d.c.) circuits to have a 

combination of series and parallel elements. 

By applying Ohm’s and Kirchhoff’s laws,  you  can  show 

that the total resistance (RT) for a number (n) of resistors in 

parallel is: 

 1 = 1 + 1 + … + 1  
RT R1 R2 Rn 

I 
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series and parallel combinations 

If a circuit contains resistors that are connected in a combination of series and parallel 

configurations, then it is necessary to use a combination of the series and parallel 

formulae to calculate the various current, voltage and resistor values. 

The approach is to split the circuit into smaller elements that can be treated as purely 

series or purely parallel circuits. Then apply the appropriate formulae and replace each 

series or parallel element with an equivalent single resistor. 

The following worked example demonstrates the principles of simplifying the network 

to find a single equivalent resistance. The same method can be applied to analyse a 

network containing five or more resistors. 
 

Give the name of each law and define it both in words and as a mathematical 

formula. 

Using a combination of these laws, derive the formulae for determining the total 

resistance for a number of resistors in series. 

Hint 

 
 

Recall the three laws used extensively to analyse d.c. circuits. P A U s E P O I N T  

 

0.00212 

 

so R3 =
  1 

 

R3 RB R4 171 . 7 270 
so 

 1   
= 

 1   
− 

 1 
=

     1 
−

 1 
= 0.00212 

RB R3 R4 
  

You now know the total resistance RTOTAL and the 

equivalent resistance of the R1 and R2 parallel network 

(RA). 

The R3 and R4 parallel network (RB) is connected  

in series with RA, so RTOTAL = RA + RB and therefore 

RB = RTOTAL − RA = 210.5 − 38.8 = 171.7 Ω. 

 

 
0 . 0258  

RA R1 R2 47 220 

 1  
so R = 

Now find the equivalent single resistor RA that could 

replace the parallel network involving R1 and R2. 
1 

=
 1 

+
 1 

=
 1 

+
 1 

= 0.0258 

 
I 0 . 95 

  
  

 

You can find the total circuit resistance from V = IR: 

 
 

 

 
 

 

 

Determine the total circuit current using the voltage 

and power dissipation. 

  

 

 
  

 
 

 
 

  
 

 

 

R1 = 47 Ω, R2 = 220 Ω, R4 = 270 Ω and the supply 

voltage is 200 V. The total power dissipated by the 

circuit is 190 W. 

Calculate the value of R3. 
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R 9 + 1 

The voltage across the 9 Ω load is therefore: 

V = IR = 1.2 × 9 = 10.8 V 

By Kirchhoff’s law, the voltage being supplied at the 

terminals of the battery must be 10.8 V. 

A battery with an e.m.f. of 12 V and internal 

 

Calculate the voltage present at the battery 

terminals. 

 

Calculate the circuit current using Ohm’s law: 
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Capacitors in series and parallel 

Capacitors in series 

Figure 1.82 shows three capacitors connected in series.   

In this configuration is it important to remember that the 

charge (q) on each capacitor will be the same. 

 
 
 
 
 
 

I I 

 

 
 

▸ Figure 1.82 Capacitors connected in series 

By applying Kirchhoff’s laws, you can show that the total 

capacitance (CT) for a number of capacitors (n) in series is: 

 1 = 1 + 1 ... + 1  

CT C1 C2 Cn 

Capacitors in parallel 

Figure 1.83 shows three capacitors connected  in  parallel. 

By considering the total charge as being the sum of the 

charges stored in each capacitor, you can show that the total 

capacitance (CT) for a number of resistors (n) in series is: 

CT = C1 + C2 ... + Cn 

 

Direct current sources 

Cells – these are electrochemical devices  able  to 

generate an e.m.f. and so can be used as a source of 

electrical current. Cells are generally limited by their 

chemistry to producing relatively low voltages; for 

example, a typical zinc–carbon cell produces a voltage of 

only 1.5 V. 

Battery – a simple battery can be made up of a single cell 

or multiple cells. Multiple cells connected in series provide 

a higher voltage than a single cell; if connected in parallel, 

they provide a higher current. 

Internal resistance – this is the resistance of the internal 

structure of the battery or cell. It usually manifests itself as 

heat as the battery discharges. 

stabilised power supply – a device that produces an 

accurately regulated d.c. voltage output from an a.c. input. 

It often has a means of limiting the current in case of a 

circuit malfunction or dead short. 

Photovoltaic (PV) cell – a semiconductor device that 

generates an e.m.f. when exposed to light. Individual 

cells are able to generate only small voltages and are 

usually connected together in arrays to enable them  

to provide more useful voltage or current output 

characteristics. 

 
 
 
 
 
 
 
 
 

I I 

 

 

 

 

 

 
 

▸ Figure 1.83 Capacitors connected in parallel 
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   Assessment  practice 1.5  

1 The circuit diagram in Figure 1.84 shows a 12 V d.c. power source 

connected to a network of resistors. 

Note: ‘4k7’ means ‘4.7 kΩ’. This notation is commonly used in engineering 

to ensure that decimal points are not missed when printed on small 

component labels. 

12V 

 
4kΩ 1kΩ 

For each of the problems in this 

assessment practice, use the 

following stages to guide your 

progress through the task. 

Plan 
• What are the important 

engineering concepts that I could 

apply to this problem? 

• Do I feel confident that my 

understanding of this topic is 

4k7 

 
V 

2k2Ω sufficiently developed to solve 

the problem? 

Do 

10kΩ 

▸ Figure 1.84 Network of resistors 

Calculate the total current flowing in the circuit. (3 marks) 

2 The electronic circuit diagram in Figure 1.85 shows a d.c. power source 

connected to three capacitors connected in parallel. 

a) Calculate the total equivalent capacitance of the three parallel 

capacitors. (1 mark) 

b) Calculate the charge stored in  each capacitor. (3 marks) 

c) Calculate the total energy stored in  the circuit. (1 mark) 

12V 

36µF 

• I can approach the task logically 

and methodically, clearly 

recording each step in my 

problem-solving process. 

• I can identify when I have gone 

wrong and adjust my approach 

to get myself back on course. 

Review 
• I can effectively review and 

check mathematical calculations 

to prevent or correct errors. 

• I can explain the best way to 

approach this type of problem. 

 
 

 
0V 

▸ Figure 1.85 A d.c. power source connected to three capacitors connected in 
parallel 

3 A voltage of 12 V is connected to a fully discharged capacitor through a 

resistance of 470 kΩ, as shown in Figure 1.86. After 2 seconds the voltage 

across the capacitor is 7.72 V. The voltage (VC) across a charging capacitor  

at any time (t) is given by the equation 

VC = V0(1 − e−t/RC) 

12V 

 

470kΩ 
 

0 

 

V 

▸ Figure 1.86 A capacitor-charging circuit 

a) Calculate the size of the capacitor. (6 marks) 
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b) Calculate the time constant for the circuit. (1 mark) 
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 F Magnetism and electromagnetic induction 
 

F1 Magnetism 

Magnetic fields 

Magnetic fields are often represented by lines of magnetic 

flux that seem to flow around sources of magnetism such 

as a simple bar magnet (see Figure 1.84). 

Lines of 
magnetic flux 

density (B) generated inside a material. Unit: henrys per 

metre (H m−1). 

= B 
H 

▸ Permeability of free space (µ0) – because there is no 

material to influence a magnetic field in a vacuum, the 
applied magnetising field strength (H) and flux density 
(B) will be the same. However, since you measure these 

two quantities in different units, in practice you must use 

the value 

µ0 = 4π × 10−7 H m−1 

▸  Relative permeability (µr) – compares the 

permeability (µ) calculated for a given material to the 

permeability of free space (µ0). 

µr =
 µ 

so µ0µr =
 B

 

 

▸ Figure 1.87 Lines of magnetic flux around a bar magnet 

The following are important parameters that are used to 

describe magnetic fields: 

▸ Magnetic flux (Φ) – a measure of the size of the 
magnetic field produced by a source of magnetism. 
Unit: weber (Wb). 

▸ Magnetic flux density (B) – a measure of how closely 

packed the lines of magnetic flux (Φ) produced by a 

source of magnetism with area (A) are. It is used to 

represent the strength or intensity of a magnetic field. 

Units: webers per square metre (Wb m−2) or tesla (T). 

B = 
Φ

 
A 

▸ Magnetomotive force (m.m.f.) (Fm) – the force 
that causes the formation of magnetic flux in a 

ferromagnetic material placed inside a solenoid or 

coiled conductor with (N) turns. It is generated by a 

current flow (I) through the solenoid. Unit: ampere (A). 

Fm = NI 

▸    Magnetic field strength (H) – a measure of the 

strength of the magnetising field produced by a 

solenoid with mean length (L) and number of turns (N) 

carrying a current (I). Unit: amperes per metre (A m−1). 

H = 
NI 

L 

▸ Permeability (µ) – a measure of the degree of 

magnetisation a material undergoes when subject 
to a magnetic field. In other words, it compares the 

magnetic field strength (H) with the magnetic flux 

Ferromagnetic materials 

Ferromagnetic materials are strongly attracted by a 

magnetic field. They readily become magnets themselves 

under the influence of an external magnetic field and are 

able to retain their magnetic properties even after the 

external field has been removed. 

B/H curves and loops 

A B/H curve is a graphical representation of the 

relationship between the magnetic flux density (B) formed 

in a specific material when the material is exposed to a 

magnetic field strength (H). 

B/H curves are not the straight lines that you might 

expect. They are curved because the permeability of 

ferromagnetic materials varies considerably with the 

strength of the applied magnetic field (H). 

Figure 1.88 shows the B/H curves for some common 

ferromagnetic materials. Each curve starts at a point 

where B and H are zero and the material is entirely 

 
sheet steel 
cast steel 

 
 
 
 

cast iron 

 

 
Magnetic field length (H) 

▸ Figure 1.88 Typical B/H curves for some ferromagnetic materials 
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demagnetised. In each case, you can see that as the 

magnetic field strength is increased, there  is  initially  a 

rapid increase in flux density. The rate of increase in B then 

slows considerably as the curve flattens out. The material is 

said to have reached magnetic saturation when any further 

increase in H leads to a negligible increase in B. 

You can gain a greater understanding of the behaviour 

of ferromagnetic materials by considering the effects  

of reversing the applied magnetic field once saturation 

has been reached. Consider the B/H loop shown in 

Figure 1.89. The dashed line shows a typical B/H curve, 

which illustrates how a completely demagnetised material 

becomes magnetised with the application of a magnetic 

field. 
B Flux density 

Saturation 

 
Retained flux 

 

 
Point of coercivity 

 

Hysteresis 

Any change in flux density (B) lags behind changes in 

the applied magnetic field strength (H). This effect is 

called magnetic hysteresis and the loop described in 

Figure 1.89 is known as the hysteresis loop. 

The internal realignments that occur during the 

magnetisation cycle in a ferromagnetic material are 

responsible for energy lost as heat. This is called 

hysteresis loss. This energy loss is proportional to the 

area inside the hysteresis loop and can vary considerably 

across different materials. 

In applications where materials undergo the magnetisation 

cycle many times a second, as in a.c. transformers,   

choosing a material with a narrow hysteresis loop is vital to 

prevent excessive losses and overheating. 

 
Reluctance 

Some metals exhibit a resistance to the presence of a 

magnetic field. The reluctance (S) is used as a measure of 

this magnetic resistance and can be expressed as the ratio 

2H 
Magnetizing force 
in opposite direction 

 
 
 
 

Saturation 
in opposite direction 

H 
0 

Magnetizing force 

 
 

 
Flux density 

2B 
in opposite direction 

of m.m.f. (Fm ) to magnetic flux (Φ). Unit: inverse henry (H−1). 

S = 
Fm

 

Φ 

Reluctance can also be expressed in terms of the mean 

length of the flux path (l), the area through which the flux   

is flowing (A), the permeability of free space (µ0) and the 

relative permeability of the material (µr) through which the 

field is passing: 

▸ Figure 1.89 A typical B/H hysteresis loop 

As you reduce the magnetic field (H) back to zero, the   

flux density (B) also decreases, but some retained flux 

remains in the material. When the applied magnetic field 

is reversed, this retained flux reduces back to zero. The size 

of the magnetic field required to eliminate the retained   

flux is known as the coercivity of the material. 

As you build the reversed magnetic field further, magnetic 

saturation in the opposite direction is reached. 

Reducing and then reversing the magnetic field once again 

has a similar effect on the material and so a closed loop is 

formed. 

S =  l  
µ0 µr A 

 
Magnetic screening 

Often, it is necessary to screen components or devices  

from magnetic fields to prevent any  unwanted  effects. 

This is a common requirement when dealing with sensitive 

electronic devices. 

Effective screening can be achieved using ferromagnetic 

materials with low reluctance, which can provide a 

pathway for lines of magnetic flux around the object or 

objects being protected. 

 



UNIT 1 Learning aim F 

59 

 

 

 

Draw a graph to help illustrate your explanation. 

What is the significance of the area inside a hysteresis loop? What possible 

consequences could this have for the design of components that rely on a 

continuous magnetisation cycle for their operation, such as a transformer? 

Hint 

 

Explain what is meant by the term magnetic hysteresis. P A U s E P O I N T  
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This can be readily demonstrated by moving a permanent 

magnet through a coil of wire, as shown in Figure 1.90. 

Lenz’s Law – an induced current always acts in such a 

direction so as to oppose the change in flux producing 

the current. 

 

dt 
 

Induced e.m.f, 

 

  S  

 
 

 
  N  
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F2 Electromagnetic induction 
Induced electromotive force 

Electromagnetic induction describes the phenomenon 

by which an electromotive force (e.m.f.) is induced 

or generated in a conductor when it is subjected to a 

changing magnetic field according to Faraday’s laws of 

electromagnetic induction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relative movement 

The negative sign is a consequence of Lenz’s law, which 

states that the induced current will act to oppose the 

change in flux. 

An alternative approach to determine the e.m.f. (E) 

considers the rate at which lines of flux are being cut by a 

conductor of length (L) travelling at velocity (v) through a 

magnetic field with flux density (B). 

E = BLv 

Note that this relationship assumes that the conductor is 

moving at right angles to the lines of flux. 

Eddy currents 

As well as inducing an e.m.f., which is able to flow as useful 

current through the conductor, other localised currents 

(eddy currents) are also created inside the conductor. 

These obey Lenz’s law by flowing in a direction opposite 

to the changing magnetic field that created them. As a 

result, a proportion of useful energy is lost in the form   

of heat. Devices in which eddy currents occur, such as 

transformers, have to be carefully designed to prevent 

excessive energy loss and overheating. For example, 

transformers are constructed with laminated thin soft iron 

plates, which are electrically isolated from one another 

using a thin layer of lacquer to restrict the size of the eddy 

currents that form. 

Electric generators 

Electric generators are usually based on the principle of 

rotating a coiled conductor inside a static magnetic field 

(see Figure 1.91). The ends of the coil are connected to 

copper slip-rings that maintain contact with stationary 

Coil Meter carbon brushes through which the induced current 

flows. 
 

Slip rings 
Brush 

 
Magnet 

 

 

▸ Figure 1.90 Demonstration of electromagnetic induction 
using a coil and a bar magnet 

 

An e.m.f. will be generated in the coil whenever the 

magnet is moved into or out of the coil and perpendicular 

lines of magnetic flux cut through the conductor. 

(Alternatively, the magnet could remain still and the coil 

could be moved.) 

 

 
Brush 

 

 

 

 

 
Magnet 

 

 

 

 

 

S 
 

Magnet 

 
N 

 
 

 
Motion 

The size of the induced e.m.f. (E) depends on the number 

of turns in the coil (N) and the rate of change of magnetic 

flux (
dΦ

): 
dt 

E = −N
dΦ

 
dt 
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▸ Figure 1.91 A simple electric generator 

The magnitude of the e.m.f. induced in the coil is 

proportional to the number of turns of the coil. It 

is also dependent on the speed of rotation and 

the strength of the magnetic field. 
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The voltage generated by a rotating coil is sinusoidal 

because the angle between the coil and the lines of flux 

varies according to the angle of rotation (see Figure 1.92). 

Peak voltage is achieved where the motion of the coil is 

perpendicular to the lines of flux, that is, cutting through 

the flux lines at right angles. Voltage falls to zero when 

the coil has rotated through 90° because at this stage the 

motion of the coil becomes parallel to the lines of flux and 

so does not cut through them at all. 

 
In practice, the rotating element (the armature) is mounted 

on bearings to allow free rotation and  to  minimise 

frictional losses. The armature encompasses the main drive 

shaft of the motor, a laminated iron core, around which 

several individual coils are wound, and the commutator. 

The commutator is split into several segments, with each 

feeding different coils (or windings) in turn as the armature 

rotates. This arrangement helps to ensure smooth rotation 

and torque delivery. 

A B Also, large motors do not use permanent magnets in the 

S S stationary part of the motor (the stator). Instead, the stator 

consists of a laminated iron ring with further windings. 

These field windings are arranged so as to provide the 

necessary stationary magnetic field when current flows 
+ through them. 

self-inductance in a coil 

According to Lenz’s law, any change in the current flowing 

in a circuit will generate a changing magnetic field, which in 

— 
turn induces a back e.m.f. that opposes the current change. 

 

▸ Figure 1.92 The sinusoidal voltage generated by a rotating coil 

Direct current electric motors 

An electric motor (see Figure 1.93) uses similar principles 

to an electric generator, but instead produces movement 

when a current is passed through a coil that is free to 

rotate inside a magnetic field. 

When a current is passed through the coil, its associated 

magnetic field opposes the field generated by the 

permanent magnets and causes the coil to rotate until the 

two fields are aligned. After rotating 180°, the split slip-ring 

(the commutator), which provides current to the rotating 

coil via carbon brushes, reverses the current flow in the   

coil and hence the direction of its magnetic field. Once 

again the magnetic field generated by the coil opposes the 

field generated by the permanent magnets, and rotation 

continues. 

Self-inductance describes a situation where an e.m.f. is 

induced in the same circuit in which the current is changing. 

self-inductance (L) is measured  in  henrys  (H),  where  1 H 

is the inductance present in a circuit where a changing 

current of 1 A s−1  induces an e.m.f. of 1 V. The induced e.m.f. 

(E) is therefore related to the rate at which the current 

changes (
dI

) and the inductance of the circuit (L): 
dt 

E = −L
dI

 
dt 

You already know that the e.m.f. induced in a coil can also 

be calculated from the rate of change of magnetic flux 

present: 

E = −N
dΦ

 
dt 

These two relationships allow you to calculate the self- 

inductance (L) using the number of turns in the coil (N), 

the current (I) and the generating magnetic flux (Φ): 

L = NΦ 

I 
 

Electric current supplied I 

externally through a 

commutator 
I
 

I 

 
The commutator reverses the I 

current each half revolution to S 

keep the torque turning the coil in 
the same direction 

▸ Figure 1.93 Basic d.c. electric motor 
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I When electric current (I) 
passes through a coil in a 
magnetic field, 
the magnetic force produces a torque 
which turns the d.c. motor 
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Energy storage in an inductor 

When you first establish the flow of current in an inductive 

circuit, a back e.m.f. is induced to oppose the increasing 

current flow. As a consequence, additional energy is 

required to establish the current flow. This additional 

energy is then stored within the magnetic field generated 

by the current and is recovered when the current stops   

and the magnetic field collapses. 

The energy stored in an inductor (W) is the product of the 

circuit inductance (L) and the current (I). Unit: joule (J). 

W = 1LI2 

Mutual inductance 

Mutual inductance (M) describes a situation where a 

changing current in one circuit induces an e.m.f. in an 

adjacent circuit. It is measured in henrys (H), where 1 H is 

the mutual inductance present where a changing current 

of 1 A s−1 in one circuit induces an e.m.f. of 1 V in the 

second. 

Transformers 

The most common and important application of mutual 

inductance is in transformers (see Figure 1.94). 

Flux¢ 

A transformer consists of two separate coils or windings 

wound on a common ferromagnetic core (commonly 

constructed from laminated steel to minimise losses 

caused by eddy currents). The primary winding is 

connected to an a.c. electrical supply and the other, 

secondary, winding is connected to an electrical load. 

The varying current in the primary winding generates 

magnetic flux in the transformer core. The flux flows  

around the core in a magnetic circuit and induces an e.m.f. 

in both the primary and the secondary windings. If we 

assume an ideal transformer (one which is well designed 

with negligible losses), then the rate of change of flux will  

be the same for each winding, and so the induced e.m.f.  

will be dependent on the number of turns in each winding. 

Where the primary coil has number of turns (N1)  and 

voltage (V1) and the secondary coil has number of turns (N2) 

and voltage (V2), the transformer voltage ratio is given by 

V1 = 
N1 

V2 N2 

▸   In a step-up transformer, the voltage ratio 
V1 

1, that 
V2 

is, the secondary voltage is greater than the primary 

voltage. 

▸ In a step down transformer, the voltage ratio 
V1 

> 1, 
 

Primary 
winding 
N1 turns 

 
 

a.c.   
V

 

supply 

Secondary 
winding 
N2 turns 

I1 I2 

V2 Load 
   

V2 

that is, the secondary voltage is less than the primary 

voltage. 

▸ In an ideal transformer, the laws of conservation of 
energy mean that the power in the primary coil is the 
same as the power in the secondary coil: 

V1I1 = V2I2 

The transformer current ratio is then given by 

V1 = 
I2 

  

Ferromagnetic core 
 

▸ Figure 1.94 A simple transformer 

V2 I1 

 

 

A good diagram will often convey much of the necessary information. 

Why do industrial electric motors use field windings instead of permanent magnets 

in their construction and operation? 

Hint 

 

Use notes and an annotated diagram to explain the operation of a d.c. motor. P A U s E P O I N T  

Most losses occur within the transformer core. 

Explain how a transformer core is designed to minimise these losses. 

Hint 

 

Explain two significant sources of losses that will affect the efficiency of a 

transformer. P A U s E P O I N T  

1 
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Assessment practice 1.6 

1 The diagram in Figure 1.95 shows a transformer used in a 

phone charger that reduces mains voltage at 230 V a.c. to 5 V 

a.c. There are 800 turns of wire on the primary winding. 

 
Iron core 

 

 
For each of the problems in this assessment 

practice, use the following stages to guide your 

progress through the task. 

Plan 
• Have I extracted and summarised all the 

information available in the question? 

• How confident do I feel that I have the 

knowledge required to approach this task? 
240Va.c. 

 
 

Primary 
winding 

 

▸ Figure 1.95 A transformer in a phone charger 

5Va.c. 

 
Secondary 
winding 

Do 
• I have spent adequate time planning my 

approach. I can clearly explain the steps 

involved and the order in which they should 

be done. 

• I can recognise when my method is leading 

nowhere and I need to stop and rethink my 
approach. 

a) Calculate the number of turns required in the secondary 

coil. (2 marks) 

b) The 5 V a.c. must be converted to 5 V d.c. before it can be 

used to power the phone. Explain what is meant by full- 

wave rectification. (2 marks) 

c) Draw a circuit diagram for a full-wave rectifier circuit. 

(3 marks) 

2 Calculate the energy stored in an inductor with inductance 

0.8 H passing a current of 2.6 A. (1 mark) 

Review 
• I can appreciate the importance of ensuring 

that my solution is laid out and explained 

with sufficient clarity so that it can be 

followed by someone else. 

• I can explain the improvements I would make 

to my approach the next time I encounter a 

similar problem. 

 

 G Single-phase alternating current 

Single-phase alternating current theory 
Alternating current (a.c.) electricity is usually generated by means of a coil rotating 

within a magnetic field. For one revolution of the coil, the resulting e.m.f. will alternate 

between a maximum positive and maximum negative value. This type of electrical 

generator is also known as an alternator. 

sinusoidal waveforms 

When the value of the e.m.f. generated by an alternator is plotted against time, the 

resulting waveform is sinusoidal. Just like the pure sine functions (see ‘Graphs of the 

trigonometric functions’ in A2 Trigonometric methods), a sinusoidal waveform is 

periodic – it is a series of identical repeating cycles. 

Two important parameters are used to describe all periodic waveforms. 

▸ Periodic time (T) – the time taken to complete one cycle, also called simply the 
period. Unit: second (s). 

▸ Frequency (f) – the number of cycles completed in one second. Unit: hertz (Hz). The 

periodic time (T) and the frequency (f) are the reciprocal of each other: 

T = 
1 

and f =  
1
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The majority of electricity in the UK is still generated 

by burning fossil fuels to drive steam turbines, which 

in turn drive generators. A two-pole generator 

supplies one complete a.c. cycle per rotation and so, 

when driven at 3000 rpm, it will generate 3000 cycles 

per minute or 50 cycles per second. It is extremely 

important for generating companies to control the 

rotational speed of their generators to maintain this 

50 Hz frequency. 

Domestic premises in the UK are supplied electricity 

through an extensive network of electrical supply 

cables and infrastructure, collectively known as the 

national grid. A series of local substations receive 

voltages, typically 11 kV 50 Hz a.c., from overhead 

supply lines and then use  step-down  transformers 

to output the 230 V 50 Hz a.c. standard UK domestic 

supply voltage. This is then fed to homes through 

underground cables. 

 
Check your knowledge 

A substation transformer has 4500 windings 

on its primary coil. Calculate the number of 

windings required on the secondary coil. 

Explain two significant causes of energy loss that 

can occur in transformers and how these can be 

minimised. 

Calculate the peak voltage of a 230 V a.c. 

sinusoidal waveform. 

A 2.5 A current flows through an inductor with 

inductance 0.3 H and a resistance of 9 Ω when 

connected to a 240 V 50 Hz a.c. supply. Calculate 

the change in current that would occur if the 

mains frequency were to drop to 45 Hz. 
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For a sinusoidal a.c. current, there are a variety of 

measures that can be used to describe the characteristics 

of the waveform. 

▸ Peak – the maximum value of voltage or current reached 
in a positive or negative half-cycle (see Figure 1.96). 

▸ Peak-to-peak – the difference between the positive 
peak and the negative peak voltage or current in a full 
cycle (see Figure 1.96). 

 

▸ Figure 1.96 Peak and peak-to-peak values of an a.c. signal 

▸    Root mean square (r.m.s.) – the value of a direct 
current that would produce an equivalent heating effect 
as the alternating current. For a sine wave, the r.m.s. 
voltage (Vrms) is related to the peak voltage (Vpeak) by 

  1  1  
Vrms = 

√2
 Vpeak or, in terms of current: Irms = 

√2
 Ipeak 

▸ Average – the average of all the instantaneous 
measurements in one half-cycle. For a sine wave, the 
average voltage (Vavg) is related to the peak voltage (Vpeak) by 

Vavg = 
2 

Vpeak or, in terms of current: Iavg = 
2 

Ipeak 

Π π 

▸   Instantaneous – the value of voltage or current at a 
particular time instant during the sinusoidal cycle. 

Instantaneous voltage and current are zero when the 
waveform crosses the time axis where it changes polarity. 

▸ Form factor – equal to the r.m.s. voltage (Vrms) divided by 
the average voltage (Vavg). For a sine wave, the form 
factor is a constant: 

form factor =  
Vrms

 

Vavg 

Vpeak 

=    
2 

× 
π 

2 Vpeak 

= π 

2 √2 
= 1.11 

This relationship is also true for current. 

Non-sinusoidal waveforms 

Figure 1.97 shows square, triangular and sawtooth waves, 
which are all examples of non-sinusoidal waveforms. 

 

Triangular 

Sawtooth 

▸ Figure 1.97 Some examples of non-sinusoidal waveforms 

Peak 
value 

Peak-to-peak 
 

Peak 
value 

Square 
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Combining sinusoidal waveforms 

The result of adding two sinusoidal voltages 

together can be determined either graphically or by 

the vector addition of phasors. 

 
Graphical approach 

In Figure 1.98, two waveforms are  drawn  on  

the same axes. At any point on the time axis, 

the resultant 

instantaneous voltage is obtained by adding 

together the individual instantaneous voltages at 

that point. The dotted line shows the resultant 

waveform generated in this way. 
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100 

   

200 
 

6 

= 

 

 
 

 
 

This approach can be used to combine any kinds of 

waveforms, irrespective of their frequency, amplitude or 

phase difference. The obvious downside to this approach, as 

with all manual graphical techniques, is that it is time- 

consuming and the accuracy of the results will be limited. 

Resultant waveform 

 
An accurate scale drawing will allow you to determine 

the magnitude of the resultant peak voltage (VR) and 

phase angle (Φ) by direct measurement. It is often more 

convenient to convert the phase angle from radians to 

degrees to allow the use of a conventional protractor. 

You could take a more analytical approach by redrawing 

the phasor diagram as shown in Figure 1.100. 

 
 
 

 

▸ Figure 1.98 Graphical representation of adding two waveforms 

Vector addition of phasors 

This approach builds on the techniques explained in the 

sections on phasors and vector addition in A2 Trigonometric 

methods. It should be noted that it is valid only when applied 

to sinusoidal waveforms with the same frequency. 

Consider two a.c waveforms represented by 

v1 = 100 sin (100ωt) and v2 = 200 sin (100ωt − 
π

) 

If you compare these to the standard form for a sinusoidal 

phasor 

v = V sin (ωt + Φ) 

you can see that the magnitude and direction of the 

phasors are as follows: 

▸ v1 has magnitude 100 with no phase shift, so the 
direction of the phasor will be 0° (horizontal). 

▸ v has magnitude 200 with a phase shift of −
π 

rad, which 

 
 
 

▸ Figure 1.100 Vector addition of phasors 

The magnitude of the resultant peak voltage (VR) can be 

determined from the cosine rule: 

a2 = b2 + c2 − 2bc cos A 

So VR
2 = 2002 + 1002 – 2 × 200 × 100 × cos 150° = 84 641 

VR = 290.93 V 

You can find the resultant phase angle (Φ) by using the sine 

rule: 

   a = b  

sin A sin B 

 290 . 93  200  
sin 150° sin Φ 

Rearranging and solving for Φ gives 

6 Φ = 20.10° or 0.351 rad 
means the direction of the phasor will be 30° below the 

horizontal. 

These phasors can therefore be drawn as in Figure 1.99. 

▸ Figure 1.99 Combining the phasors of a.c. waveforms 

 

Then you can express the resultant waveform as 

vR ≈ 291 sin (ωt – 0.35) 

Remember that the phase angle must be in radians if it is 

to be used in the general form for a sinusoidal phasor. 

Note that here the phase angle lags below the horizontal 

and so is considered negative. 

Impedance 

A.c. circuits that contain capacitors and/or inductors are 

more complex to analyse 

than those containing purely ohmic resistance. 

 

100 

30° <I 

 

200 

2 
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You might find it helpful to review previous work on phasors in the A2 

 

Use notes and sketches to explain the relationship between a rotating vector 

represented by a phasor and a sinusoidal waveform. 

Hint 

 
 

Explain the application of phasors in the addition of a.c. waveforms. P A U s E P O I N T  
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Impedance (Z) is the total opposition to the flow of electricity exhibited in an a.c circuit. 

The voltage and current in a purely resistive a.c. circuit are in phase, and the 

impedance of the circuit is equal to its resistance. 

In circuits containing either capacitance or inductance, the impedance is made up of 

two parts: the resistance (R), which is independent of frequency, and the reactance 

(X), which varies with frequency. There are two forms of reactance, both dependent 

on frequency (f): 

▸ Capacitive reactance XC =
 1 

, where C is the capacitance value in farads. Unit: ohm (Ω). 

▸ Inductive reactance XL = 2πfL, where L is the inductance value in henrys. Unit: ohm (Ω). 

The total impedance (Z) is made up of the resistance (R) and the reactance (X). 

However, these cannot simply be added together, as phase changes between voltage 

and current waveforms must be taken into account. Impedance is therefore the vector 

sum of the ohmic resistance and the reactance present in a circuit. 

▸ For a circuit with resistance R and inductive reactance XL, the total impedance (Z) is 
given by 

 

Z = √X2 + R2 

▸ For a circuit with resistance R and capacitive reactance XC, the total impedance (Z) is 
given by 

 

Z = √X2 + R2 

Alternating current rectification 

Rectification is the conversion of an a.c. waveform into d.c. You looked at this in the 

section on diodes in E2 Direct current circuit theory. 

 

For each of the problems in this assessment practice, use the 

following stages to guide your progress through the task. 

 
Will a sketch help me to visualise the scenario given in the 

question? 

Is it clear to me how to approach this type of question? Will  

I have to refer back to my notes? 

 
I can apply the methods taught in this unit to solve 

problems appropriately. 

I understand my own limitations and when I need to stop, 

revisit the textbook, look at my lesson notes or ask for help. 

 
I can explain to others why I chose a particular method for 

solving this type of problem and how to apply it correctly. 

I can evaluate how effective my planning was in approaching 

this question and how I might make improvements for next 

time. 

Draw a sketch of the phasors that can be used 

to represent these waveforms. (2 marks) 

Use trigonometric methods to find the 

magnitude and phase angle of the resultant 

phasor when v1 and v2 are combined. 

(4 marks) 

State the resultant waveform in the standard 

form v = V sin (ωt + Φ). (1 mark) 

Calculate the frequency of the resultant 

waveform. (1 mark) 

 

Calculate the current drawn from the supply. 

(3 marks) 

 
 

  v = 65 sin (80ωt) and v = 90 sin (80ωt − ). 

1 Two a.c. voltage waveforms are represented by 

Assessment practice 1.7 
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Assessment practice 1.8 synoptic question 

A remote ski cabin relies on a diesel engine to generate its electricity. The system is depicted in Figure 1.101. 

The diesel used to run the engine has a total energy content of 36 MJ l−1 and is consumed at a rate of 3.2 l h−1. 

The generator driven by the diesel engine provides a 240 V electrical supply at 32 A. 

Waste heat from the diesel engine is used to heat the cabin. This is transferred from circulating engine coolant via a 

heat exchanger into a glycol-filled heating system. 

The diesel engine generates 15 kW of energy wasted as heat. The glycol in the heat circulation system has a specific 

heat capacity of 4.18 kJ kg−1 K−1 and a density of 1096 kg m−3. The flow rate of glycol through the heat exchanger is 

12 l s−1 and the temperature difference maintained between the input and output pipes is +0.2°C. 
 
 

Diesel 
Tank 

 

Circulating 
engine 
coolant Heat 

exchanger 

 

 
Circulating glycol 

▸ Figure1. 101 Electricity generator using a diesel engine 

 
 
 

240V, 32A 

 

 
Output to heating system 

 
 

Input from heating system 

a) Calculate the thermal efficiency of the heat transfer between the diesel engine and the glycol heat circulation  

system. (7m arks) 

b) Calculate the overall system efficiency. (7m arks) 

Electrical 
generator 

Diesel 
engine 
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Rob Taylor 

Product designer 
for an industrial 
lighting company 

I’ve been working as an industrial product designer as  part  of  a  multi-disciplinary 

design team for four years. In the industrial lighting products that we work on, function, 

reliability, safety and efficiency are all key factors that we must get right. Of course, 

aesthetics are also an important aspect of our work, especially when working with 

architects to design bespoke lighting fixtures for big projects. 

I am lucky to work with colleagues who have a diverse range of electromechanical and 

electronic specialist knowledge and experience, and I am still learning new things every 

day. When designing products, I have access to a range of materials and manufacturing 

techniques in our UK factory. A single product might involve  designing  sheet  metal 

parts, aluminium castings and plastic injection moulded components. Internal electrical 

wiring must then be specified and lamps and their electronic  drive  gear  positioned 

inside the luminaire. Safe and reliable ways of suspending the complete luminaires 

from a high warehouse roof or integrating them as part of an office ceiling system also 

need to be considered. I have even worked to design curved aluminium reflectors to 

distribute light evenly throughout a work area. Every project brings something new,   

and with recent developments in high-output LED technology, which is revolutionising 

lighting, these are exciting times to be involved in the lighting industry. 

 

Focusing your skills 
Seeing the whole picture 

When designing a complete electromechanical 

product, machine or system it is important to 

appreciate the principles that underpin its operation 

and how these can affect one another. Here are some 

example questions that a designer might ask: 

• Does the wiring size specified have a current rating 

significantly above the levels expected during 

normal operation? What would happen if safe 

working loads were exceeded? 

• What would be the effects of extreme high or low 

temperatures on electrical and mechanical systems? 

• Are mechanical or electrical systems likely to lose 

energy as heat during operation? What might the 

main losses be and how could these be reduced? 

 
 

• If cooling is required, how much heat energy would need to be 

removed? Which type of coolant would be appropriate, what 

flow rate would be needed, and how could the coolant be 

circulated? 

• Are electrical devices likely to cause electromagnetic 

interference and affect the operation of nearby sensitive 

electronic systems? If there is no room for the devices to 

simply be moved away from each other, how else might such 

interference be prevented? 

• Are all the components of sufficient mechanical strength to 

withstand the working stresses encountered during operational 

extremes? 

• How can I minimise the amount of material used to achieve the 

required outcome? What solid shapes might be most useful? 

• How will the static forces existing in mechanical components be 

affected by linear or rotational movement? 
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Getting ready for assessment 
 

 

 

 

 

 

This unit is externally assessed using an unseen paper-based examination. 

Pearson sets and marks the examination. The assessment must be taken under 

examination conditions. 

The assessment test will last two hours and there are a maximum of 80 marks 

available. 

The test paper is divided into three sections (A, B and C). 

Section A: Applied Mathematics has a series of short-answer questions each 

worth up to 2 marks. There are a total of 10 marks available in Section A. 

Section B: Mechanical and Electrical/Electronic Principles has a series of short- 

and longer-answer questions each worth up to 7 marks. There are a total of 56 

marks available in Section B. 

Section C: Synoptic Question has a single long-answer question worth 14 marks. 

Marks quoted for each section are based on Sample Assessment Materials. 

Remember that all the questions are compulsory and you should attempt to 

answer each one. 
 

This section has been written to help you to do your best when you take the external 
examination. Read through it carefully and ask your tutor if there is anything you are not sure 
about. 
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Listen to and read carefully any instructions you are given. Lots of marks are 

often lost through not reading questions properly and misunderstanding what 

the question is asking. 

Most questions contain command words. Understanding what these words 

mean will help you to understand what the question is asking you to do. 
 

Command 

word 

Definition – what it is asking you to do 

Calculate Learners judge the number or amount of something by using the information they already 

have, and add, subtract, multiply or divide numbers. 

For example, ‘Calculate the reaction forces…’ 

Describe Learners give a clear, objective account in their own words showing recall, and in some cases 

application, of the relevant features and information about a subject. 

For example, ‘Describe the process of heat transfer…’ 

Draw Learners make a graphical representation of data by hand (as in a diagram). 

For example, ‘Draw a diagram to represent…’ 

Explain Learners make something clear or easy to understand by describing or giving information 

about it. 

For example, ‘Explain one factor affecting…’ 

Find Learners discover the facts or truth about something. 

For example, ‘Find the coordinates where…’ 

Identify Learners recognise or establish as being a particular person or thing; verify the identity of. 

For example, ‘Identify the energy loss…’ 

Label Learners affix a label to; mark with a label. 

For example, ‘Label the diagram to show…’ 

Solve Learners find the answer or explanation to a problem. 

For example, ‘Solve the equation to…’ 

State Learners declare definitely or specifically. 

For example, ‘State all three conditions for…’ 
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Sample answers 
 

Answering applied mathematics calculation questions 
• Identify the method required to solve the type of problem set. 

• Explain each step and show all your workings. 

• Express your answer in appropriate units. 

• Check your answer. 
 
 
 

 
The velocity of a model rocket fired vertically upwards is given by the equation 

v = 2t2 + 5t – 11. 

Find, by use of the quadratic formula, the time when the rocket reached its 

highest point. (2 marks) 

Answer 

At its highest point the velocity of the rocket will have fallen to 0, so 

2t2 + 5t – 11 = 0 

The quadratic formula takes the form 

x = 
−b ± √b2 − 4ac 

2a 
In this problem: 

a = 2, b = 5, c = −11 

so t = 
−5 ± √52 − 4 × 2 × (−11) 

= 
−5 ± 10 . 63 

= 1.41 or −3.91
 

 

2 × 2 4 

The negative value is not valid in the context of the question, so check the 

answer by substituting t = 1.41 into v = 2t2 + 5t – 11: 

v = 3.96… + 7.03… − 11 = 0 (remember to use unrounded values) 

The highest point will be reached after 1.41 s. 

For some of the questions you will be given background information on which the questions 
are based. 

Look at the sample questions that follow and our tips on how to answer these well. 
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Answering engineering principles calculation questions 
• Identify the variables from the information given in the question. 

• Write down the formula you need. 

• Substitute numbers into the formula. 

• Explain each step and show all your workings. 

• Express your answer in appropriate units. 

• Check your answer. 
 
 
 

An engineer is testing an inductor with an inductance of 0.5 H and a resistance 

of 8 Ω. It is connected to a 120 V 50 Hz a.c. supply. 

Calculate the current drawn from the power supply. (3 marks) 

Answer 

The solution will require the calculation ofI rms. 

The values given in the question are: 

L = 0.5 H, R = 8 Ω, Vrms = 120 V, f = 50 Hz 

The inductive reactance is XL = 2πfL = 2π × 50 × 0.5 = 157.08 Ω. 
 

The total impedance is given by Z = √ XL 2 + R2 = √157. 082 + 82 = 157.28 Ω. 

So the a.c. current is I = 
Vrms 

=
 120 

= 0.763 A or 763 mA. 
 

rms Z 
157.28 

Answering engineering principles short-answer questions – 
state 

• Read the question carefully. 

• Make sure that you make the same number of points as there are marks 

available in the question. 
 
 
 

 

State two sources of energy loss that affect the efficiency of electrical 

transformers. (2 marks) 

Answer 

Eddy currents. Hysteresis losses. 
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Answering engineering principles short-answer questions – 
describe, explain 

 
 

 

Describe the process of heat transfer through conduction. (4 marks) 

Answer 

Heat transfer by direct contact between adjacent atoms: 

Heat energy is a measure of the vibrational kinetic energy possessed by atoms. These 

vibrations are passed between atoms that are in direct contact with each other. 

Heat transfer by the movement of electrons: 

Heat energy can also be distributed through a material by the transfer of vibrational 

kinetic energy possessed by free-moving electrons as they move around within a 

material. This helps to explain why metals are in general good thermal (as well as 

electrical) conductors. 

 

Answering synoptic questions 
 
 

 

A heat engine driving a combined heat and power system outputs mechanical energy 

to drive a generator. 

The energy is provided by a combustion process that uses air and a fuel with an energy 

content of 40 MJ kg−1, which is supplied at a rate of 0.003 kg s−1. The generator has a 

rotor that turns at 1500 rpm and has a torque of 255 N m. The output of the generator 

is 6.5 A at 400 V. 

a) Explain how energy loss processes in both mechanical and electrical equipment 

affect the efficiency of the system. (4 marks) 

b) Calculate the efficiency with which the heat engine provides mechanical work to the 

generator. (7 marks) 

c) Calculate the overall system efficiency. (3 marks) 

 

 

 


